Math, asked by spoorthimmvachana, 1 year ago

Prove that cot^4A - 1 = cosec^4A - 2cosec^2A

Answers

Answered by adityamahale2003
41

Step-by-step explanation:

LHS=cot⁴A-1

=(cot²A)²-(1)²

=(cot²A+1)(cot²-1)

=(cosec²A-1+1)(cosec²A-1-1)

=cosec²A(cosec²A-2)

=cosec⁴A-2cosec²A=RHS

HENCE PROVED

Answered by saurabhsemalti
18

Step-by-step explanation:

cot {}^{4} a - 1 = cosec {}^{4} a - 2cosec {}^{2} a \\ expanding \: lhs \\  \frac{cos {}^{4} a}{sin {}^{4}a }  - 1 =  \frac{cos {}^{4} a -  {sin}^{4} a}{sin {}^{4}a }  \\  =  \frac{( {cos}^{2}a -  {sin}^{2}a)(cos {}^{2}a +  {sin}^{2}a    }{sin {}^{4}a }   \\  = ( {cos}^{2} a - sin {}^{2}a)(1) \div  {sin}^{4}a  \\    =  \frac{ {cos}^{2} a - sin {}^{2}a }{sin {}^{4} a}  \\  =  \frac{(1 -  {sin}^{2} a) -  {sin}^{2}a }{sin {}^{4}a } \\  =  \frac{1 - 2 {sin}^{2}a }{sin {}^{4} a}  .........(1)\\ expanding \: rhs \\  = cosec {}^{4} a - 2cosec {}^{2} a \\  =  \frac{1}{ {sin}^{4} a}  -  \frac{2}{ {sin}^{2}a }  \\  =  \frac{1 - 2 {sin}^{2}a }{sin {}^{4}a }.....(2)

since (1)=(2),

LHS=RHS,

HENCE VERIFIED.

MARK AS BRAINLIEST IF HELPED

Similar questions