Math, asked by ne5h8armadivya, 1 year ago

Prove that:cot A - cos A / cot A + cos A = cosec A - 1 / cosec A + 1

Answers

Answered by sargamkashyap
226
❤️HOPE IT HELPS U IF YEAH PLZ MARK IT AS BRAINLIEST☯️✌️
Attachments:
Answered by mysticd
154

Answer:

\frac{cotA - cosA}{cotA+cosA}=\frac{cosecA-1}{cosecA+1}

Step-by-step explanation:

LHS =\frac{cotA - cosA}{cotA+cosA}

=\frac{\frac{cosA}{sinA}-cosA}{\frac{cosA}{sinA}+cosA}

We\:know \:that \\\boxed {cotA= \frac{cosA}{sinA}}

=\frac{cosA\left(\frac{1}{sinA}-1\right)}{cosA\left(\frac{1}{sinA}+1\right)}

=\frac{\left(\frac{1}{sinA}-1\right)}{\left(\frac{1}{sinA}+1\right)}

= \frac{cosecA-1}{cosecA+1}\\=RHS

Therefore,

\frac{cotA - cosA}{cotA+cosA}=\frac{cosecA-1}{cosecA+1}

•••♪

Similar questions