Math, asked by Nisar7861, 1 year ago

prove that : cot A + cosA÷ cot A - cos A = cosecA + 1÷ cosecA - 1

Answers

Answered by Udaykant
9
cotA -cosA)/(cotA + cosA) = (cosecA-1)/(cosecA+1)


(cotA -cosA)/(cotA + cosA)
((cosA/sinA)-cosA)/((cosA/sinA)-cosA) since cotA=cosA/sinA

taking cosA common from numretor nd denominatr nd cancelling it we get
((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA
therfore
(cosecA-1)/(cosecA+1)
Answered by iamyash97
6

Answer:

cotA -cosA)/(cotA + cosA) = (cosecA-1)/(cosecA+1)

(cotA -cosA)/(cotA + cosA)

((cosA/sinA)-cosA)/((cosA/sinA)-cosA) since cotA=cosA/sinA

taking cosA common from numretor nd denominatr nd cancelling it we get

((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA

therfore

(cosecA-1)/(cosecA+cosecA)

please like and comment

Similar questions