prove that : cot A + cosA÷ cot A - cos A = cosecA + 1÷ cosecA - 1
Answers
Answered by
9
cotA -cosA)/(cotA + cosA) = (cosecA-1)/(cosecA+1)
(cotA -cosA)/(cotA + cosA)
((cosA/sinA)-cosA)/((cosA/sinA)-cosA) since cotA=cosA/sinA
taking cosA common from numretor nd denominatr nd cancelling it we get
((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA
therfore
(cosecA-1)/(cosecA+1)
(cotA -cosA)/(cotA + cosA)
((cosA/sinA)-cosA)/((cosA/sinA)-cosA) since cotA=cosA/sinA
taking cosA common from numretor nd denominatr nd cancelling it we get
((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA
therfore
(cosecA-1)/(cosecA+1)
Answered by
6
Answer:
cotA -cosA)/(cotA + cosA) = (cosecA-1)/(cosecA+1)
(cotA -cosA)/(cotA + cosA)
((cosA/sinA)-cosA)/((cosA/sinA)-cosA) since cotA=cosA/sinA
taking cosA common from numretor nd denominatr nd cancelling it we get
((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA
therfore
(cosecA-1)/(cosecA+cosecA)
please like and comment
Similar questions