prove that cot square A cosec square B -cot square B cosec square A = cot square A- cot square B
Answers
Answered by
7
To prove--->
Cot²A Cosec²B - Cot²B Cosec²A = Cot²A - Cot²B
Proof--->
LHS
= Cot²A Cosec²B - Cot²B Cosec²A
We have an identity of trigonometery,
1 + Cot²θ = Cosec²θ , applying it here we get,
= Cot²A ( 1 + Cot²B ) - Cot²B ( 1 + Cot²A )
= Cot²A + Cot²A Cot²B - ( Cot²B + Cot²A Cot²B )
= Cot²A + Cot²A Cot²B - Cot²B - Cot²A Cot²B
= Cot²A - Cot²B = RHS
Additional information--->
1) Sin²θ + Cos²θ = 1
2) 1 + tan²θ = Sec²θ
3) 1 + Cot²θ = Cosec²θ
4) Sin( 90° - θ ) = Cosθ
5) Cos ( 90° - θ ) = Sinθ
6) tan ( 90° - θ ) = Cotθ
7) Cot ( 90° - θ ) = tanθ
8) Sec ( 90° - θ ) = Cosecθ
9) Cosec ( 90° - θ ) = Secθ
Similar questions