Math, asked by nybs5, 2 months ago

prove that (cot theta -cos theta) / ( cot theta + cos theta)= (cosec theta -1)/(cosec theta +1).

Answers

Answered by Anonymous
4

To Prove :

 \longmapsto \sf \frac{ \cot \theta - \cos\theta}{\cot\theta + \cos\theta}   = \frac{ \csc\theta - 1}{ \csc\theta + 1}  \\

Solution :

On solving LHS

\longmapsto \sf\frac{ \cot\theta - \cos\theta}{\cot\theta + \cos\theta} \\

\longmapsto \sf\dfrac{ \dfrac{ \cos\theta}{ \sin\theta} - \cos\theta}{\dfrac{ \cos\theta}{ \sin\theta}+ \cos\theta} \\

\longmapsto \sf\dfrac{ \dfrac{ \cos \theta-  \sin\theta \cos\theta}{ \cancel{\sin\theta}}}{\dfrac{ \cos \theta+  \sin\theta \cos\theta}{ \cancel{\sin\theta}}} \\

 \longmapsto \sf\dfrac{ \cos\theta -  \sin\theta \cos\theta}{ \cos\theta +  \sin\theta \cos\theta}\\

\longmapsto \sf \dfrac{\cancel{ \cos\theta} (1-  \sin \theta)}{ \cancel{\cos\theta}(1 +  \sin\theta)}\\

 \longmapsto \sf\dfrac{ 1 -  \sin\theta}{ 1+ \sin\theta}\\

 \longmapsto \sf\dfrac{ 1 - \dfrac{1}{ \csc\theta} }{ 1+ \dfrac{1}{ \csc\theta} }\\

\longmapsto \sf\dfrac{ \dfrac{ \csc\theta - 1}{ \cancel{ \csc\theta}} }{ \dfrac{ \csc\theta + 1}{ \cancel{\csc\theta}} }\\

 \longmapsto \sf\frac{ \csc \theta- 1}{ \csc \theta+ 1} \\

LHS = RHS

Hence proved

Attachments:
Similar questions