Math, asked by pd1503, 9 months ago

Prove that:
cot theta+ cosec theta - 1/cot theta- cosec theta + 1= 1+cos theta/ sin theta​

Answers

Answered by likhitadasari
2

Answer:

Step-by-step explanation:

SharonrAmbitious

Cot theta + cosec theta-1/ cot theta-cosec theta+1= 1+cos theta/sin theta is proved

Solution:

We have to prove:-

Using trigonometric identity:

Applying this in L.H.S of equation we get,

Cancelling terms we get,

Hence proved

Please mark it as the brainliest if it helped u ☺️

Answered by Brenquoler
3

Given:

 \frac{cotø +  cosecø  -  1}{cotø - cosecø + 1}  =  \frac{1 + cosø}{sinø}

Solution:

 =  >  \frac{cotø +  cosecø  -  1}{cotø - cosecø + 1}  =  \frac{1 + cosø}{sinø}  \\  =  >  \frac{ \frac{cosø}{sinø} +  \frac{1}{sinø} - 1  }{ \frac{cosø}{sinø} -  \frac{1}{sinø}  + 1 }  \\  =  >  \frac{ \frac{cosø + 1 - sinø}{sinø} }{ \frac{cosø - 1 + sinø}{sinø} }  \\  =  >   \frac{cosø + (1 - sinø)}{cosø - (1 - sinø)}  \\ =  >   \frac{cosø + (1 - sinø)}{cosø - (1 - sinø)}  \times  \frac{cosø + (1 - sinø)}{cosø  + (1 - sinø)}  \\ =  >   \frac{(cosø + (1 - sinø)) ^{2} }{cos ^{2} ø - (1 - sinø) ^{2} }  \\  =  >  \frac{ {cos}^{2}ø + 2 \times cosø \times (1 - sinø) + (1 - sinø)^{2}  }{ {cos}^{2} ø - (1  -  2sinø +  {sin}^{2} ø)}   \\  =  >  \frac{ {cos}^{2} ø + 2csø - 2sinøcosø + 1 - 2sinø +  {sin}^{2} ø}{cos^{2}ø - 1 + 2sinø -  {sin}^{2} ø }

 =  >  \frac{ {sin}^{2} ø +  {cos}^{2}ø - 2sinø + 2cos ø + 1 - 2sinøcosø}{1 -  {sin}^{2}ø + 1 + 2sinø -  {sin}^{2} ø }  \\  =  >  \frac{1 + 1 - 2(sinø - cosø) - 2sinøcosø}{ - sin ^{2}ø + 2sinø }  \\  =  >  \frac{2 - 2(sinø - cosø) - 2sinøcosø}{2(sinø -  {sin}^{2}ø) }  \\  =  >  \frac{2(1 - (sinø - cosø) - sinøcosø)}{2sinø(1 - sinø}  \\  =  >  \frac{1 - sinø + cosø - sinøcosø}{sinø(1 - sinø)}  \\  =  >  \frac{(1 - sinø) + cosø(1 - sinø)}{sinø(1 - sinø)}  \\  =  >  \frac{(1 - sinø)(1 + cosø)}{sinø(1 - sinø)}   \\ =  >  \: \frac{1 + cosø}{sinø}  \\  =  >  L.H.S. = \: \frac{1 + cosø}{sinø}  \\  =  > R.H.S. = \: \frac{1 + cosø}{sinø}   \\ L.H.S. = R.H.S \\Hence Proved

Similar questions