Math, asked by yugant1691, 2 months ago

prove that cot2 theta -tan2 theta=cosec2 theta - sec2 theta​

Answers

Answered by siddhantsingh1801
0

Answer:

Answer:

To Prove: \frac{cot^2\,\theta(sec\,\theta-1)}{(1+sin\,\theta)}=sec^2\,\theta(\frac{1-sin\,\theta}{1+sec\,\theta})

(1+sinθ)

cot

2

θ(secθ−1)

=sec

2

θ(

1+secθ

1−sinθ

)

Consider,

LHS

=\frac{cot^2\,\theta(sec\,\theta-1)}{(1+sin\,\theta)}=

(1+sinθ)

cot

2

θ(secθ−1)

=\frac{cot^2\,\theta(sec\,\theta-1\times\frac{sec\,\theta+1}{sec\,\theta+1})}{(1+sin\,\theta\times\frac{1-sin\,\theta}{1-sin\,\theta})}=

(1+sinθ×

1−sinθ

1−sinθ

)

cot

2

θ(secθ−1×

secθ+1

secθ+1

)

=\frac{cot^2\,\theta(\frac{sec^2\,\theta+sec\,\theta-sec\,\theta-1}{sec\,\theta+1})}{\frac{1-sin\,\theta+sin\,\theta-sin^2\,\theta}{1-sin\,\theta}}=

1−sinθ

1−sinθ+sinθ−sin

2

θ

cot

2

θ(

secθ+1

sec

2

θ+secθ−secθ−1

)

=\frac{cot^2\,\theta(\frac{sec^2\,\theta-1}{sec\,\theta+1})}{\frac{1-sin^2\,\theta}{1-sin\,\theta}}=

1−sinθ

1−sin

2

θ

cot

2

θ(

secθ+1

sec

2

θ−1

)

=\frac{cot^2\,\theta(\frac{tan^2\,\theta}{sec\,\theta+1})}{\frac{cos^2\,\theta}{1-sin\,\theta}}=

1−sinθ

cos

2

θ

cot

2

θ(

secθ+1

tan

2

θ

)

=(\frac{cot^2\,\theta\times tan^2\,\theta}{sec\,\theta+1})(\frac{1-sin\,\theta}{cos^2\,\theta})=(

secθ+1

cot

2

θ×tan

2

θ

)(

cos

2

θ

1−sinθ

)

=\frac{1(1-sin\,\theta)}{(sec\,\theta+1)cos^2\,\theta}=

(secθ+1)cos

2

θ

1(1−sinθ)

=\frac{sec^2\,\theta(1-sin\,\theta)}{(sec\,\theta+1)}=

(secθ+1)

sec

2

θ(1−sinθ)

=RHS=RHS

Hence Proved.

Similar questions