PROVE THAT :
cot³Ф*sin³Ф÷(cosФ+sinФ)² + tan³Ф*cos³Ф÷(cosФ+sinФ)² = secФcosecФ-1÷cosecФ+secФ
plz ans this
Answers
Answered by
1
Answer:
Step-by-step explanation:
LHS= cot³Фsin³Ф/(cosФ+sinФ)² + tan³Фcos³Ф/(cosФ + sinФ)²
cot³Ф=cos³Ф/sin³Ф
tan³Ф=sin³Ф/cos³Ф
=(cos³Ф/cosФ+sinФ )² + sin³Ф/(cosФ+sinФ)²
cos³Ф+sin³Ф/(cosФ+sinФ)²
we can write cos³Ф+sin³Ф as (cosФ+sinФ)(cos²Ф+sin²Ф-sinФcosФ) because a³+b³=a+b(a²+b²-ab)
so our equations becomes :
1-sinФcosФ/cosФ+sinФ
divide numerator and denominator by sinФcosФ
cosecФsecФ-1/cosecФ + secФ
= RHS
hence proved
hope for brainliest!!!!
Similar questions