prove that cot3theta.sin3theta/cos theta + sin theta whole square + tan3 theta.cos 3 theta/cos theta + sin theta whole square = sec theta cosec theta - 1/cosec theta + sec theta
Answers
Answered by
15
Tan^3A / Sec^2A + Cot^3A / Cosec^2A
= (sin^3A/cos^3A) / (1 / Cos^2A) + (Cos^3A/Sin^3A) / (1 / Sin^2A)
= Sin^3A/CosA + Cos^3A/SinA
= (Sin^4A + Cos^4A) / SinA.CosA
= [ (Sin^2A + Cos^2A)^2 - 2Sin^2A.Cos^2A] / SinA.CosA
= ( 1- 2Sin^A.Cos^A)/ SinA.CosA
RHS = SecA CosecA - 2sinAcosA
= 1/CosA . 1/SinA - 2SinACosA
= (1 - Sin^2A.Cos^2A) / sinAcosA
Hence LHS = RHS (PROVED)
= (sin^3A/cos^3A) / (1 / Cos^2A) + (Cos^3A/Sin^3A) / (1 / Sin^2A)
= Sin^3A/CosA + Cos^3A/SinA
= (Sin^4A + Cos^4A) / SinA.CosA
= [ (Sin^2A + Cos^2A)^2 - 2Sin^2A.Cos^2A] / SinA.CosA
= ( 1- 2Sin^A.Cos^A)/ SinA.CosA
RHS = SecA CosecA - 2sinAcosA
= 1/CosA . 1/SinA - 2SinACosA
= (1 - Sin^2A.Cos^2A) / sinAcosA
Hence LHS = RHS (PROVED)
Answered by
4
Answer:
★AnSwEr:−
ᴛᴀɴ^3ᴀ / sᴇᴄ^2ᴀ + ᴄᴏᴛ^3ᴀ / ᴄᴏsᴇᴄ^2ᴀ
= (sɪɴ^3ᴀ/ᴄᴏs^3ᴀ) / (1 / ᴄᴏs^2ᴀ) + (ᴄᴏs^3ᴀ/sɪɴ^3ᴀ) / (1 / sɪɴ^2ᴀ)
= sɪɴ^3ᴀ/ᴄᴏsᴀ + ᴄᴏs^3ᴀ/sɪɴᴀ
= (sɪɴ^4ᴀ + ᴄᴏs^4ᴀ) / sɪɴᴀ.ᴄᴏsᴀ
= [ (sɪɴ^2ᴀ + ᴄᴏs^2ᴀ)^2 - 2sɪɴ^2ᴀ.ᴄᴏs^2ᴀ] / sɪɴᴀ.ᴄᴏsᴀ
= ( 1- 2sɪɴ^ᴀ.ᴄᴏs^ᴀ)/ sɪɴᴀ.ᴄᴏsᴀ
ʀʜs = sᴇᴄᴀ ᴄᴏsᴇᴄᴀ - 2sɪɴᴀᴄᴏsᴀ
= 1/ᴄᴏsᴀ . 1/sɪɴᴀ - 2sɪɴᴀᴄᴏsᴀ
= (1 - sɪɴ^2ᴀ.ᴄᴏs^2ᴀ) / sɪɴᴀᴄᴏsᴀ
ʜᴇɴᴄᴇ ,ʟʜs = ʀʜs (ᴘʀᴏᴠᴇᴅ)
(¯`◕‿◕´¯) ᴛʜᴀɴᴋ ʏᴏᴜ (¯`◕‿◕´¯)
Similar questions