Math, asked by bgeethamallikarjun, 11 months ago

Prove that
CotA - CosA ÷Cos^2A equals to CotA ÷ 1+sinA
Please send answer

Answers

Answered by digavallitarun
2

Answer:

Step-by-step explanation:

If we assume that A is not multiple of 90 degree than it can be solve easily .

Take L.H.S. and change the equation using formula cotA = (cosecA.cosA)

(cosecA . cosA - cosA)/(cosecA .cosA + cosA)

Take out common term from numerator and denominator and cancel it if our assumption is right.

(cosecA-1)/(cosecA+1) which is equal to R.H.S. of given equation.

Hence proved.

hope it helps!

Answered by Anonymous
5

To prove :-

 \frac{cot \: a - cos \: a}{ {cos}^{2}a }  =  \frac{cot \: a}{1 + sin \: a}

Proof :-

As cosec a×Cos a is cot a,

Therefore,

L. H. S,

 =  >  \frac{cosec \: a.cos \: a - cos \: a}{ {cos}^{2} a}

 =  >  \frac{cos \: a(cosec \: a - 1)}{ {cos}^{2}a }

 =  >  \frac{cos \: a( \frac{1}{sin \: a}  - 1)}{1 -  {sin}^{2}a }

 =  >  \frac{cos \: a( \frac{1 - sin \: a}{sin \: a})}{(1 - sin \: a)(1 + sin \: a)}

 =  > cos \: a \times  \frac{1 - sin \: a}{sin \: a}  \times  \frac{1}{(1 - sin \: a)(1 + sin \: a)}

 =  >  \frac{cos \: a}{sin \: a}  \times  \frac{1}{1 + sin \: a}

 =  >\frac{cot \: a}{1 + sin \: a} =  \:  R. H. S

As L. H. S=R. H. S

Hence proved.

Similar questions