Prove that cotA + sinA/ cotA - sinA = 1-cosA+secA/1+ cosA-secA
Answers
Answered by
0
Lets take Left Hand Side
cosecA (secA-1) -cotA (1-cosA)
Now let's simplify i.e. make cosecA as 1/sinA , secA as 1/cosA and cotA as cosA/sinA
we get-
(1/sinA)[(1/cosA)-1] - (cosA/sinA)(1-cosA)
Now. let's do cross multiplication of [(1/cosA)-1]
we get-
(1/sinA)[(1-cosA)/cosA] - (cosA/sinA)(1-cosA)
Now, let's multiply brackets right to the - sign as well as left to the - sign
we get-
[(1-cosA)/(sinA.cosA)] - [cosA(1-cosA)/sinA]
Now if you see the part (1-cosA)/sinA is common part so we will take it out and we get-
(1-cosA)/sinA [(1/cosA) -cosA]
Again perform cross multiplication inside [(1/cosA) -cosA]
we get-
[(1-cosA)/sinA] [(1-cos^2A)/cosA]
Now, 1-cos^2A=sin^2A
So,
[(1-cosA)/sinA] [sin^2A/cosA]
Now, let's multiply both the square brackets
we get-
[(1-cosA).sin^2A]/[sinA.cosA]
We will cancel one sinA from numerator (sin^2A) and denominator (sinA), we get
(1-cosA).sinA/cosA
Now do the multiplication-
sinA/cosA - cosA*sinA/cosA
Now, sinA/cosA=tanA and cancel one cosA from numerator and denominator and we get-
tanA - sinA
which is our required Right Hand Side.. :-)
Similar questions