prove that cotA + Tan A=cosecA. secA
Answers
Answered by
0
Step-by-step explanation:
cotA=1/tan A
now,
LHS = 1/tanA+tanA
1+ tan^2/tanA
sec^A/tanA ( 1+tan^A=sec^2A)
1/cos^2A/ sinA/cosA
(sec^A =1/cos^2A) and ( tan A= sinA /cos A)
1/cosA/sinA
cosecA. secA
(1/cosA= secA ,and1/sinA =cosecA)
LHS =RHS
Answered by
1
Step-by-step explanation:
L.H.S= cot A + tan A
cos A/sin A + sin A/ cos A
by doing L.C.M, we get
(cos^2A + sin^2A )/ sinA cosA
1 / sinA cosA (using sin^2A + cos^2A = 1)
1/sinA*1/cosA
cosecA secA (1/sinA = cosecA and 1/cosA = secA)
R.H.S = cosecA secA
.: L.H.S=R.H.S
.: cotA + tanA = cosecA secA
HOPE THIS WAS HELPFUL
Similar questions