Prove that diagonal of parallelogram are equal
Answers
Answered by
6
Let ABCD be a parallelogram. To show that ABCD is a rectangle, we have to prove that one of its interior angles is 90º.
In ΔABC and ΔDCB
AB = DC (Opposite sides of a parallelogram are equal)
BC = BC (Common)
AC = DB (Given)
∴ ΔABC ≅ ΔDCB (By SSS Congruence rule)
⇒ ∠ABC = ∠DCB
It is known that the sum of the measures of angles on the same side of transversal is 180º.
∠ABC + ∠DCB = 180º (AB || CD)
⇒ ∠ABC + ∠ABC = 180º
⇒ 2∠ABC = 180º
⇒ ∠ABC = 90º
hence proved opposite sides r parallel
In ΔABC and ΔDCB
AB = DC (Opposite sides of a parallelogram are equal)
BC = BC (Common)
AC = DB (Given)
∴ ΔABC ≅ ΔDCB (By SSS Congruence rule)
⇒ ∠ABC = ∠DCB
It is known that the sum of the measures of angles on the same side of transversal is 180º.
∠ABC + ∠DCB = 180º (AB || CD)
⇒ ∠ABC + ∠ABC = 180º
⇒ 2∠ABC = 180º
⇒ ∠ABC = 90º
hence proved opposite sides r parallel
Similar questions