Math, asked by Prem8258, 1 year ago

Prove that dy/dx of cosx+sinx/cosx-sinx = sec^2 pi/4+x

Answers

Answered by mansigupta23
6

y =   \frac{ \cos(x)  +  \sin(x) }{ \cos(x) -  \sin(x)  } \  \\ \frac{dy}{dx}   =  \frac{ \cos(x)  -  \sin(x) ( -  \sin(x) +  \cos(x))  -  \cos(x)  +  \sin(x)  ( -  \sin(x)  -  \cos(x) }{ { \cos(x)  -  \sin(x) }^{2} }  \\  \frac{dy}{dx}  =  \frac{ -  \sin(x) \cos(x)  +  \sin( ^{2} )x +  \cos( ^{2} ) x -  \sin(x)  \cos(x)  +  \sin(x)    \cos(x)  +  \sin ^{2} (x) +  \cos ^{2} (x)  +  \sin(x) \cos(x)   }{ { \cos(x) -  \sin(x)  }^{2} }  \\ 2 \sec(2x)
hey mate here is your answer!!!
Similar questions