Math, asked by pratikgawad818, 4 days ago

prove that for all x ∈ R . cot^-1(-x)=π-cot^-1(x)​

Attachments:

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

\tt{Let\,\,\,cot^{-1}(-x)=\theta\,\,,\,\,\,\theta\in(0,\pi)}

\tt{\implies\,-x=cot(\theta)\,\,,\,\,\,\theta\in(0,\pi)}

\tt{\implies\,x=-cot(\theta)}

Now, we know,

\bf{cot(\pi-\phi)=-cos(\phi)\,\,\,\,\,\,and\,\,\,\,\,\,cot(2\pi-\phi)=-cot(\phi)}

But only \pi-\phi \in (0,\pi)

So,

\tt{\implies\,x=cot(\pi-\theta)}

\tt{\implies\,cot^{-1}(x)=\pi-\theta}

\tt{\implies\,\theta=\pi-cot^{-1}(x)}

Hence,

\tt{\implies\,cot^{-1}(-x)=\pi-cot^{-1}(x)}

Similar questions