Math, asked by shivika2705, 9 months ago

prove that for any real value of a , (a²+3)x²+(a+2)x-5<0 is satisfied for atleast one negative x.​

Answers

Answered by ERB
1

Answer:

Step-by-step explanation:

(a²+3)x²+(a+2)x-5<0

according to Quadratic Formula,

x ₁ = \frac{-(a+2) + \sqrt{(a+2)^{2} - 4(a^{2}+3 )(-5)}  }{2(a^{2}+3)}    , x₂ = \frac{-(a+2) - \sqrt{(a+2)^{2} - 4(a^{2}+3 )(-5)}  }{2(a^{2}+3)}

x₁ =  \frac{-(a+2) + \sqrt{(a+2)^{2} +20(a^{2}+3)}  }{2(a^{2}+3)}      , x₂= \frac{-(a+2) - \sqrt{(a+2)^{2} +20(a^{2}+3)}  }{2(a^{2}+3)}

 

here, \sqrt{(a+2)^{2} +20(a^{2}+3)}  is a positive number for any value of a and greater than a+2  

\sqrt{(a+2)^{2} +20(a^{2}+3)}   >  a+2  >  - (a+2)

so ,  x₂ is negative for any real value of a

for any real value of a , (a²+3)x²+(a+2)x-5<0 is satisfied for atleast one negative x

Similar questions