Math, asked by rajprithvi8560, 11 months ago

Prove that:
(i) √secθ-1/secθ+1+√secθ+1/secθ-1=2cosecθ
(ii) √1+sinθ/1-sinθ+√1-sinθ/1+sinθ=2secθ
(iii) √1+cosθ/1-cosθ+√1-cosθ/1+cosθ=2cosecθ
(iv)secθ-1/secθ+1=(sinθ/1+cosθ)²

Answers

Answered by amitnrw
2

√secθ-1/secθ+1+√secθ+1/secθ-1=2cosecθ

Step-by-step explanation:

√secθ-1/secθ+1+√secθ+1/secθ-1=2cosecθ

LHS = √secθ-1/secθ+1+√secθ+1/secθ-1

on rationalizing each term

=> √(secθ-1)²/(sec²θ-1) +√(secθ+1)²/(sec²θ-1)

= √(secθ-1)²/(tan²θ) +√(secθ+1)²/(tan²θ)

= (secθ-1)/tanθ +(secθ+ 1)/tanθ

= 2Secθ/tanθ

= (2/Cosθ)/(Sinθ/Cosθ)

= 2/Sinθ

= 2Cosecθ

= RHS

QED

proved

√secθ-1/secθ+1+√secθ+1/secθ-1=2cosecθ

(ii) √1+sinθ/1-sinθ+√1-sinθ/1+sinθ=2secθ

LHS = √1+sinθ/1-sinθ+√1-sinθ/1+sinθ

on rationalizing each term

=> (1 + sinθ)/Cosθ +  (1 - sinθ)/Cosθ

= 2/Cosθ

= 2Secθ

= RHS

(iii) √1+cosθ/1-cosθ+√1-cosθ/1+cosθ=2cosecθ

LHS = √1+cosθ/1-cosθ+√1-cosθ/1+cosθ

on rationalizing each term

(1+cosθ)/Sinθ + (1-cosθ)/Sinθ

= 2/Sinθ

= 2Cosecθ

= RHS

(iv)secθ-1/secθ+1=(sinθ/1+cosθ)²

LHS =  secθ-1/secθ+1

(1/Cosθ  - 1)/(1/Cosθ + 1)

= (1 - Cosθ)/(1 + Cosθ)

Multiplying and dividing by 1 + Cosθ

= ( 1 - Cos²θ)/(1 + Cosθ)²

=Sin²θ/(1 + Cosθ)²

= (Sinθ/(1 + Cosθ))²

= RHS

QED

Learn more:

Prove the following ( sin x - cos x +1)/ (sin x + cos x - Brainly.in

https://brainly.in/question/12563868

prove that cos x + cos y whole square + sin x + sin y whole square ...

https://brainly.in/question/11061175

prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx

https://brainly.in/question/3338788

Similar questions