Prove that :
i) sin(45°+A) + cos (45°+A) = √2 cosA
ii) sin^2 (45°+A) + sin^2 45°-A)= 1
Answers
Answer:
ea to x74c47t8x47z36a were the 6 aqa whah
Step-by-step explanation:
goeey47stj WC goes wcif × 4d74stua31d try iyzit
proved
Step-by-step explanation:
(i) To prove sin(45°+A) + cos (45°+A) = √2 cosA
LHS = sin(45°+A) + cos (45°+A)
= sin45°.cosA + cos45°.sinA + cos45°.cosA - sin45°.sinA
= .cosA + .sinA + .cosA - sinA
= .cosA + .cosA
= .cosA
= .cosA
= .cosA
= RHS
=> LHS = RHS
hence proved
(ii) To prove sin²(45°+A) + sin²(45°-A) = 1
take sin²(45°-A) = [ sin(45°-A) ]²
= [ sin45°.cosA - cos45°sinA ]²
= [.cosA - .sinA] ²
= [cos45°.cosA - sin45°.sinA]²
= [cos(45°+A)]²
= cos²(45°+A) ---------------------- (A)
LHS = sin²(45°+A) + sin²(45°-A)
= sin²(45°+A) + cos²(45°+A) by (A)
= 1
= RHS
=> LHS = RHS
hence proved