Prove that,
(i) sina + sin(120° + alpha) + sin(240° + alpha) = 0
Answers
Step-by-step explanation:
sinA + sin (120′+A) + sin (240′+A) = 0————→ (1)
Observe the L.H.S of equation (1),
sin A + sin (120+A) + sin (240+A) = sin A + (sin 120.cos A + cos 120.sinA )+ (sin 240.cosA + cos 240.sin A )
(∵ sin(A+B) = sinA.cosB +cosA.sinB)
sinA + sin (120+A) + sin (240+A) = sin A + √3/2 . cosA+ (-1/2) . sin A +
(-√3/2) . cosA + (-1/2) . sin A
(∵ sin120′ = √3/2, sin240′ = -√3/2) , (cos 120′ = cos 240′ = -1/2)
sinA+ sin (120+A) + sin (240+A) = sin A + √3/2 . cosA - 1/2 . sinA
-√3/2 . cosA - 1/2 . sinA
sinA + sin (120+A) + sin (240+A) = sinA - [(1/2 + 1/2) . sin A]
sinA + sin (120+A) + sin (240+A) = sinA - (1) . sinA
sinA + sin (120+A) + sin (240+A) = 0
This is equal to R.H.S of equation (1).
Hence proved.
Answer:
I don't know.......................