Prove that if a+b+c=π then sina +sinb+sinc=4cosa/2 cosb/2 cosc/2
Answers
Answered by
4
=> (cos^2A + cos^2B + 2cosAcosB) + (sin^2A + sin^2B - 2sinAsinB)
=> cos^2A + cos^2B + sin^2A + sin^2B + 2cosAcosB - 2sinAsinB
=> cos^2A + sin^2A + cos^2B + sin^2B + 2(cosA*cosB - sinA*sinB)
=> 1 + 1 + 2(cosA*cosB - sinA*sinB)
=> 2 + 2(cosA*cosB - sinA*sinB)
=> 2 (1 + (cosA*cosB + sinA*sinB))
=> 2 * (1 + cos(A-B))
{Because: cosA*cosB - sinA*sinB = cos(A+B)}
=> 2 * 2cos^2 ((A+B)/2)
=> 4cos^2 (A+B)/2
=> cos^2A + cos^2B + sin^2A + sin^2B + 2cosAcosB - 2sinAsinB
=> cos^2A + sin^2A + cos^2B + sin^2B + 2(cosA*cosB - sinA*sinB)
=> 1 + 1 + 2(cosA*cosB - sinA*sinB)
=> 2 + 2(cosA*cosB - sinA*sinB)
=> 2 (1 + (cosA*cosB + sinA*sinB))
=> 2 * (1 + cos(A-B))
{Because: cosA*cosB - sinA*sinB = cos(A+B)}
=> 2 * 2cos^2 ((A+B)/2)
=> 4cos^2 (A+B)/2
Answered by
2
Answer:
thanks for asking this question same question even I was searching for
Similar questions
Math,
7 months ago
Social Sciences,
7 months ago
Math,
1 year ago
Geography,
1 year ago
Hindi,
1 year ago