Math, asked by cutelixkhushi4281, 1 year ago

Prove that if a+b+c=π then sina +sinb+sinc=4cosa/2 cosb/2 cosc/2

Answers

Answered by lovelymansianiit
4
=> (cos^2A + cos^2B + 2cosAcosB) + (sin^2A + sin^2B - 2sinAsinB)

=> cos^2A + cos^2B + sin^2A + sin^2B + 2cosAcosB - 2sinAsinB

=> cos^2A + sin^2A + cos^2B + sin^2B + 2(cosA*cosB - sinA*sinB) 

=> 1 + 1 + 2(cosA*cosB - sinA*sinB) 

=> 2 + 2(cosA*cosB - sinA*sinB) 

=> 2 (1 + (cosA*cosB + sinA*sinB))

=> 2 * (1 + cos(A-B)) 

{Because: cosA*cosB - sinA*sinB = cos(A+B)}

=> 2 * 2cos^2 ((A+B)/2)

=> 4cos^2 (A+B)/2
Answered by prakyath59
2

Answer:

thanks for asking this question same question even I was searching for

Similar questions
Math, 7 months ago