Math, asked by visheshpant, 6 months ago

Prove that if a line segment from the centre of a circle to a chord bisects the chord is perpendicular on chord,​

Answers

Answered by Agamsain
25

Correct Question :-

  • Prove that the line drawn through the center of a circle to bisect a chord is perpendicular to the chord.

Given :-

  • O is the center of circle
  • AB is chord of circle
  • OX bisects AB   i.e.   AX = BX

To Prove :-

  • OX ⊥ AB

Explanation :-

In ∆AOX and ∆BOX,

\implies \: {\mathrm{OA =OB\: \: \:(Radius\:of\:Circle)}

\implies \: {\mathrm{OX =XO\: \: \:(Common)}

\implies \: {\mathrm{AX =BX\: \: \:(Given)}

\therefore \: {\mathrm{\bold{{\triangle AOX \cong \triangle BOX \: \: \: (SSS \;Rule)}}}

\implies \: {\boxed{\mathrm{\angle AXO= \angle BXO\: \: \:(C.P.C.T)\;\;\;\;....(1)}}

On line AB,

Hence, ∠AXO and ∠BXO form a linear pair

\implies \: {\mathrm{{\angle AXO + \angle BXO = 180^{\circ}\: \: \:(L.P)}}

\implies \: {\mathrm{{\angle AXO + \angle AXO = 180^{\circ}\: \: \:(Equation\;1)}}

\implies \: {\mathrm{{2\angle AXO  = 180^{\circ}}}

\implies \: {\mathrm{{\angle AXO  = \dfrac{180^{\circ}}{2}}}

\implies \: {\boxed{\mathrm{{\bold{\angle AXO  = 90^{\circ}}}}}

\therefore \; \;{{\boxed{\mathrm   {\; \angle AXO = \angle BXO = 90^{\circ}}}}}

\implies \:{\underline{\boxed{\mathrm  {\bold  {OX \: \perp \: AB}}}}

Hence, Proved.

@Agamsain

Attachments:
Similar questions