Math, asked by joyeetarocks3379, 8 months ago

Prove that if the area of two similar triangles are equal then they are congruent

Answers

Answered by tennetiraj86
0

Answer:

all sides of the first triangle are equal to the all sides of the second sides then they are congruent

Attachments:
Answered by yakshitakhatri2
6

\huge\colorbox{seagreen}{\tt{Answer ♥︎}}

{\underline{\underline{\sf{\color{blue}{Given}}}}}

\sf{∆ ABC ∼ PQR}

\sf{ar ( ∆ ABC ) = ar ( ∆ PQR )}

{\underline{\underline{\sf{\color{blue}{To \:  prove}}}}}

\sf{∆ ABC ≅ ∆ PQR}

{\underline{\underline{\sf{\color{blue}{Proof}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\sf{∴ \frac{ar ( ∆ ABC )}{ar(∆PQR)} = \frac{ {AB}^{2} }{ {PQ}^{2}  }   = \frac{ {BC}^{2} }{ {QR}^{2} }  =  \frac{ {AC}^{2} }{ {PR}^{2} }   }}}

( Ratio of area of similar triangles is equal to the square of corresponding sides )

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{But, \:  \frac{ar(∆ ABC)}{ar(∆PQR }  = 1 \:  \:──━━⧼ \:  Given}

 \:  \:  \:  \:  \:  \: \sf{∴ \frac{ {AB}^{2} }{ {PQ}^{2} }  =  \frac{ {BC}^{2} }{ {QR}^{2} }  =  \frac{ {AC }^{2} }{ {PR}^{2} } = 1 }

\sf{So, \:  {AB }^{2}  =  {PQ}^{2}  \: or \: AB = PQ}

 \:  \:  \:  \:  \:  \:  \:  \:  \sf{ {BC }^{2} =  {QR}^{2} \: or \:    BC= QR}

 \:  \:  \:  \:  \:  \:  \:  \: \sf{ {AC }^{2} =  {PR}^{2} \: or \:    AC= PR}

\sf{∴ By  \: SSS  \: congruency  \: axiom,}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\underline{\underline{\sf{\bold{\color{red}{∴  ∆ ABC ≅ ∆ PQR}}}}}}

\sf{Hence, proved}

────━━━━━━━━━━━━━━━━────

Mark as brainliest ✔

Attachments:
Similar questions