Math, asked by manavchauhan123, 11 months ago

prove that in a right triangle,the square of the hypotenuse is equal to the sum of the square on the other two sides​

Answers

Answered by abelmathewthomas2
0

Answer:

Step-by-step explanation:

To Prove- AC²=AB²+BC²

Construction: draw perpendicular BD onto the side AC .

Proof:

We know that if a perpendicular is drawn from the vertex of a right angle of a right angled triangle to the hypotenuse, than triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

We have

△ADB∼△ABC. (by AA similarity)

Therefore, AD/ AB=AB/AC

(In similar Triangles corresponding sides are proportional)

AB²=AD×AC……..(1)

Also, △BDC∼△ABC

Therefore, CD/BC=BC/AC

(in similar Triangles corresponding sides are proportional)

Or, BC²=CD×AC……..(2)

Adding the equations (1) and (2) we get,

AB²+BC²=AD×AC+CD×AC

AB²+BC²=AC(AD+CD)

( From the figure AD + CD = AC)

AB²+BC²=AC . AC

Therefore, AC²=AB²+BC²

Read more on Brainly.in - https://brainly.in/question/1543217#readmore

Answered by Anonymous
2

Answer:

Given :

A right triangle ABC right angled at B.

To prove :

AC² = AB² + BC²

Construction :

Draw BD ⊥ AC

Proof :

In Δ ADB and Δ ABC

∠ A = ∠ A    [ Common angle ]

∠ ADB = ∠ ABC   [ Both are 90° ]

∴  Δ  ADB  Similar to Δ ABC   [ By AA similarity ]

So , AD / AB = AB / AC   [ Sides are proportional ]

= > AB² = AD . AC  ... ( i )

Now in Δ BDC and Δ ABC

∠ C = ∠ C    [ Common angle ]

∠ BDC = ∠ ABC   [ Both are 90° ]

∴  Δ  BDC Similar to Δ ABC   [ By AA similarity ]

So , CD / BC = BC / AC

= > BC² = CD . AC   ... ( ii )

Now adding both equation :

AB² + BC² = CD . AC +  AD . AC

AB² + BC² = AC ( CD + AD )

AB² + BC² = AC² .

AC² = AB² + BC² .

Hence proved .

Attachments:
Similar questions