Math, asked by saurav782, 1 year ago

prove that in a right triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides

Answers

Answered by BrainlyVirat
37
hey .. the answer is.. given above.. hope it helps you and pls mark it as brainliest..
Attachments:
Answered by shakeeb101
7

Answer:

AC²=AB²+BC²

Step-by-step explanation:

Given: A right angled ∆ABC, right angled at B

To Prove: AC²=AB²+BC²

Construction: Draw perpendicular BD onto the side AC .

Proof:

We know that if a perpendicular is drawn from the vertex of a right angle of a right angled triangle to the hypotenuse, than triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

We have

△ADB∼△ABC. (by AA similarity)

Therefore, AD/ AB=AB/AC

(In similar Triangles corresponding sides are proportional)

AB²=AD×AC……..(1)

Also, △BDC∼△ABC

Therefore, CD/BC=BC/AC

(in similar Triangles corresponding sides are proportional)

Or, BC²=CD×AC……..(2)

Adding the equations (1) and (2) we get,

AB²+BC²=AD×AC+CD×AC

AB²+BC²=AC(AD+CD)

( From the figure AD + CD = AC)

AB²+BC²=AC . AC

Therefore, AC²=AB²+BC²

Hope this helps you!!!

Similar questions