Math, asked by shauryamohanty990, 10 months ago

prove that in the following figure ∆AOB≈∆COD​

Attachments:

Answers

Answered by BrainlyConqueror0901
6

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given :  }}  \\  \implies \triangle \text{AOB and}  \: \triangle  \text{COD \: are \: right \: angled \: triangle} \\  \\  \implies  \text{AO = CO = 4 \: cm} \\  \\  \implies  \text{BO = DO = 3 \: cm} \\  \\  \implies  \angle ABO =  \angle BDO =  90 \degree \\  \\ \red{ \underline \bold{To \: Prove :  }} \\  \implies  \triangle AOB \cong  \triangle COD

• According to given question :

 \text{Proof : } \\   \bold{In \triangle AOB \: and \: \triangle COD} \\  \implies  \text{AO = CO = 4 \: cm \:  \:  \:  (Given )} \\  \\  \implies  \text{BO = DO = 3 \: cm \:  \: \:(Given )} \\  \\  \implies  \angle B =  \angle D =  90  \degree  \:  \:  \:  \: \:  (Right \: angle \: triangle) \\  \\  \therefore  \triangle AOB \:  \cong  \triangle COD\:  \:  \:  \: (By \: R.H.S \: property) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \huge\green{Proved  }

Similar questions