Math, asked by DopeGirl6300, 10 months ago

Prove that integration of logsinxdx limits 0 to pi/2 = integration of logcosx dx limits 0 to pi/2 = - pi/2 log2

Answers

Answered by Anonymous
7

Step-by-step explanation:

\huge\underline\bold\red{hope it will help u }

Attachments:
Answered by Anonymous
10

\huge\mathcal\green{Question:}

________________________________

Prove that :

\int\limits_{0}^{\pi /2} log(\sin x) \, dx = \int\limits_{0}^{\pi /2} log(\cos x) \, dx =\left [ - \dfrac{\pi}{2} (log2) \right ] \\

________________________________

\huge\mathcal\blue{Answer:}

Let us assume

\implies I = \int\limits_{0}^{\pi /2} log(\sin x) \, dx __________ ( 1 )

We can also write the expression as

\implies I = \int\limits_{0}^{\pi /2} log \: \sin \left ( \dfrac{\pi}{2} - x \right ) \, dx\\

Using Trigonometric Identity

\fbox{\sin \left ( \dfrac{\pi}{2} - x \right ) = \cos x } \\

\implies I = \int\limits_{0}^{\pi /2} log(\cos x) \, dx __________( 2 )

________________________________

Adding equation ( 1 ) and ( 2 ), we get

\implies 2I = \int\limits_{0}^{\pi /2} log(\sin x) \, dx + \int\limits_{0}^{\pi /2} log(\cos x) \, dx

\implies 2I = \int\limits_{0}^{\pi /2} (log\: \sin x + log \: cos x)\, dx

Using Logarithmic Identity

\fbox{log(a)+log(b)  = log(ab) } \\

\implies 2I = \int\limits_{0}^{\pi /2} log (\sin x \: \cos x ) \, dx

Multiplying and Dividing by 2 on RHS

\implies 2I = \int\limits_{0}^{\pi /2} log \left ( \dfrac{2 \sin x \: \cos x}{2} \right ) \, dx

Using Trigonometric Identity

\fbox{2 \: \sin x \: \cos x = \sin 2x} \\

\implies 2I  = \int\limits_{0}^{\pi /2} log \left ( \dfrac{\sin 2x}{2} \right ) \, dx

\fbox{log \left ( \dfrac{m}{n} \right ) = log(m) - log(n) } \\

\implies 2I = \int\limits_{0}^{\pi /2} log ( \sin 2x - log2) \, dx

Separating the integral in both terms

\implies 2I = \int\limits_{0}^{\pi /2} log(\sin 2x)dx - \int\limits_{0}^{\pi /2} log2 \, dx

\implies 2I = \int\limits_{0}^{\pi /2} log(\sin 2x) dx - (log2)\int\limits_{0}^{\pi /2}dx

Since we know that

\fbox{\int dx = x} \\

\implies 2I = \underbrace{\int\limits_{0}^{\pi /2} log(\sin 2x)dx}_{A} - \dfrac{\pi}{2} (log2)

\implies 2I = A - \dfrac{\pi}{2} (log2) _________ ( 3 )

________________________________

Finding the value of A

A=\int\limits_{0}^{\pi /2} log(\sin 2x)dx ________ ( 4 )

Putting 2x=t

\implies 2x = t

Differentiating Both sides w.r.t x

\implies 2 \dfrac{dx}{dx} = \dfrac{dt}{dx}

\implies dx = \dfrac{dt}{2} ______ ( 5 )

From equation ( 4 ) and equation ( 5 )

\implies A = \int\limits_{0}^{\pi} log(\sin t)\dfrac{dt}{2}

Using Property of Integration

\fbox{\int\limits_{0}^{a} k\: f(x)\, dx= k \: \: \int\limits_{0}^{a} f(x) \, dx} \\

\implies A = \dfrac{1}{2} \int\limits_{0}^{\pi}  log(\sin t)dt

Using Property of integration

\fbox{\int\limits_{0}^{2a} f(x) \, dx =2 \: \int\limits_{0}^{a} f(x) \, dx}

\implies A = \dfrac{1}{2} \times 2 \int\limits_{0}^{\pi /2} log(\sin t) dt

Using of integration

\fbox{\int\limits_{a}^{b} f(x) \, dx = \int\limits_{a}^{b} f(t) \, dt }

\implies A = \int\limits_{0}^{\pi /2} log(\sin x)dx

\implies A = I [ From equation 1 ]

________________________________

Putting A = I in equation ( 3 )

\implies 2I = I - \dfrac{\pi}{2}(log2)

\implies 2I - I = \left [ - \dfrac{\pi}{2} (log2) \right ]

 I = \left [ - \dfrac{\pi}{2} (log2) \right ]

Hence it is proved that

\fbox{\int\limits_{0}^{\pi /2} log(\sin x) \, dx = \int\limits_{0}^{\pi /2} log(\cos x) \, dx =\left [ - \dfrac{\pi}{2} (log2) \right ]  } \\ \\ \\

\huge\mathcal\red{HENCE \: \: PROVED :}

Similar questions