Math, asked by anusain93, 11 months ago

prove that ....inverse trigonometry​

Attachments:

Answers

Answered by BrainlyPopularman
16

{ \bold{ \green{ \underline{ANSWER} :  - }}} \\  \\  \\ { \bold{ \underline{TO \:  \:  PROVE} : -  }} \\  \\ { \bold{  {tan}^{ - 1}( \frac{ \sqrt{1 +  {x}^{2} } -  \sqrt{1 -  {x}^{2} }  }{ \sqrt{1 +  {x}^{2} }   +    \sqrt{1 -  {x}^{2} } })  =   \frac{\pi}{4} - \frac{1}{2}  {cos}^{ - 1}( {x}^{2} )   }}  \\  \\ { \bold{ \red{ \underline{L.H.S.}  : -  } }} \\  \\ { \bold{ \pink{ =  { \tan}^{ - 1} ( \frac{ \sqrt{1 +  {x}^{2} } -  \sqrt{1 -  {x}^{2} }  }{ \sqrt{1 +  {x}^{2} } -  \sqrt{1 -  {x}^{2} }  }) }}} \\  \\ { \bold{ \orange{put \:  \:  {x}^{2} =  \cos(2 \alpha )  }}} \\  \\ { \bold{ \pink{ =  { \tan}^{ - 1}( \frac{ \sqrt{1 +  \cos(2 \alpha )  }  -  \sqrt{1 -  \cos(2 \alpha ) } }{ \sqrt{1 +  \cos(2 \alpha ) }   +  \sqrt{1 -  \cos(2 \alpha ) } }  } }} \\  \\ { \bold{ \pink{ =  {tan}^{ - 1} (  \frac{ \sqrt{2 {cos}^{2}( \alpha ) }  -  \sqrt{2 { \sin}^{2} ( \alpha )} }{ \sqrt{2 { \cos }^{2}( \alpha ) }   +  \sqrt{2 { \sin}^{2}  \alpha } }) }}} \\  \\ { \bold{ \pink{ =  {tan}^{ - 1}( \frac{ \cos( \alpha )  -  \sin( \alpha ) }{ \cos( \alpha )  +  \sin( \alpha ) }  )}}} \\  \\ { \bold{ \pink{ =  {tan}^{ - 1} ( \frac{1 -  \tan( \alpha ) }{1 +  \tan( \alpha ) }) }}} \\  \\  { \bold{ \pink{ =  { \tan }^{ - 1} ( \tan( \frac{\pi}{4}  -  \alpha ) }}} \\  \\ { \bold{ \pink{ =  \frac{\pi}{4}  -  \alpha }}} \\  \\ { \bold{ \pink{ =  \frac{\pi}{4} -  \frac{1}{2} { \cos }^{ - 1}  ( {x}^{2} ) }}} \\  \\ { \bold{ \red{ = R.H.S. \:  \:  \: (H.P.)}}} \\  \\  \\  \\ { \bold{ \boxed{ \huge{ \red{FOLLOW \: ME...}}}}}

Similar questions