Math, asked by vinay35567, 1 year ago

prove that is not rational number
   \sqrt{5}  -  \sqrt{3}

Answers

Answered by Anonymous
13

\mathfrak{\large{\underline{\underline{Solution:-}}}}

Let us assume that √5 - √3 is rational

i.e √5 - √3 = a/b (Where a and b are co - primes and b ≠ 0)

 \sf  -  \sqrt{3} =  \dfrac{a}{b} -  \sqrt{5}

By squaring on both sides

 \sf {( -  \sqrt{3})}^{2} =  {( \dfrac{a}{b} -  \sqrt{5} )}^{2}

 \sf 3 =  {( \dfrac{a}{b}) }^{2} - 2( \dfrac{a}{b})( \sqrt{5}) +  {( \sqrt{5})}^{2}

[Since (x - y)² = x² - 2xy + y²]

 \sf 3 =  \dfrac{ {a}^{2} }{ {b}^{2} } - 2 \sqrt{5}. \dfrac{a}{b} + 5

 \sf 3 + 2 \sqrt{5}. \dfrac{a}{b} =  \dfrac{ {a}^{2} }{ {b}^{2} }  + 5

 \sf 2 \sqrt{5}. \dfrac{a}{b} =  \dfrac{ {a}^{2} }{ {b}^{2} } + 5 - 3

 \sf 2 \sqrt{5}. \dfrac{a}{b} =  \dfrac{ {a}^{2} }{ {b}^{2} } + 2

By taking LCM on Right Hand Side of the equation

 \sf 2 \sqrt{5}. \dfrac{a}{b} =  \dfrac{ {a}^{2} + 2 {b}^{2} }{ {b}^{2} }

 \sf 2 \sqrt{5} =  \dfrac{ {a}^{2} + 2 {b}^{2} }{ {b}^{2} } \times  \dfrac{b}{a}

 \sf 2 \sqrt{5} =  \dfrac{ {a}^{2} + 2 {b}^{2}  }{b} \times  \dfrac{1}{a}

 \sf 2 \sqrt{5} =  \dfrac{ {a}^{2} + 2 {b}^{2} }{ab}

 \sf \sqrt{5} =  \dfrac{ {a}^{2} + 2 {b}^{2}  }{2ab}

Since 'a' and 'b' are integers Right Hand Side i.e  \sf \dfrac{ {a}^{2} + 2 {b}^{2}  }{2ab} is a rational number.

So, Left Hand Side of the equation is a rational number.

But, this contradicts the fact that √5 is irrational.

This contradiction has arised because of our wrong assumption that √5 - √3 is rational.

So we can conclude that √5 - √3 is irrational or not a rational number.

Similar questions