Math, asked by gurnamsandhu88, 10 months ago

prove that L.H.S = R.H.S​

Attachments:

Answers

Answered by Anonymous
31

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

To prove:-

\sf{\orange{\:\dfrac{(1+\sin A)}{(\csc A-\cot A)}\:-\:\dfrac{(1-\sin A)}{(\csc A+\cot A)}}} \\ \\ \sf{\orange{\:=\:2(1+\cot A)}}

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Take\:L.H.S.}}}}}

\mathfrak{\bf{\:\dfrac{(1+\sin A)}{(\csc A-\cot A)}\:-\:\dfrac{(1-\sin A)}{(\csc A+\cot A)}}}

\small\sf{\green{\:\:\:\:\:\:\:\left(\dfrac{\cos A}{\sin A}\:=\:\cot A\right)}} \\ \\ \small\sf{\green{\:\:\:\:\:\:\:\left(\dfrac{1}{\sin A}\:=\:\csc A\right)}}

\mapsto\sf{\:\dfrac{(1+\sin A)}{(\dfrac{1}{\sin A}-\dfrac{\cos A}{\sin A})}\:-\:\dfrac{(1-\sin A)}{(\dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A})}}

\mapsto\sf{\:\dfrac{\sin A(1+\sin A)}{(1-\cos A)}\:-\:\dfrac{\sin A(1-\sin A)}{(1+\cos A)}}

\mapsto\sf{\:\dfrac{\sin A(1+\cos A)(1+\sin A)-\sin A(1-\cos A)(1-\sin A)}{(1-\cos^2 A)}}

\small\sf{\green{\:\:\:\:\:\:\:(1-\cos^2 A)\:=\:\sin^2 A}}

\mapsto\sf{\:\dfrac{\sin A(1+\sin A+\cos A.\sin A+\cos A)-\sin A(1-\sin A-\cos A+\cos A.\sin A)}{\sin^2 A}}

\mapsto\sf{\:\dfrac{\sin A(1+\sin A+\cos A.\sin A+\cos A-1+\sin A+\cos A-\cos A.\sin A)}{\sin^2 A}}

\mapsto\sf{\:\dfrac{\sin A(2\sin A+2\cos A)}{(\sin A.\sin A)}}

\mapsto\sf{\:\dfrac{2(\sin A+\cos A)}{\sin A}}

\mapsto\sf{\:2\left(\dfrac{\sin A}{\sin A}+\dfrac{\cos A}{\sin A}\right)}

\mapsto\sf{\pink{\:2(1+\cot A)}} \\ \\ \mathfrak{\bf{\:\:\:\:\:\:\:=\:R.H.S.}}

That's proved.

Answered by uk46race
0

Hi got question ok make point bro man thank you brainylist on give known

Similar questions