Prove that LHS=RHS
Answers
Step-by-step explanation:
Here is your answer Hope This Answer Helps You
Given question is to prove
(secA-tanA)^2(1+sinA)=1-sinA
LHS\ =\ (secA-tanA)^2(1+sinA)
=\ (sec^2A+tan^2A-2secA.tanA)(1+sinA)
=\ (\dfrac{1}{cos^2A}+\dfrac{sin^2A}{cos^2A}-2.\dfrac{1}{cosA}.\dfrac{sinA}{cosA})(1+sinA)
=\ \dfrac{1+sin^2A-2.sinA.cosA}{cos^2A}.(1+sinA)
=\ \dfrac{(1-sinA)^2}{1-sin^2A}.(1+sinA)
=\ \dfrac{(1-sinA)^2(1+sinA)}{(1-sinA)(1+sinA)}
=\ 1-sinA
please mark me as brainliest
RHS\ =\ 1-sinA
Hence, we can see that
LHS = RHS
Hence the given equations are proved.
Step-by-step explanation:
The following trigonometric identities should be known:
secx = 1/cosx,
tanx = sinx/ cosx
sec^2x - tan^2x = 1.
Now Left hand side
= 1/(secx - tanx)
Multiply both numerator & denominator by (secx + tanx).
LHS= (secx + tanx)/ (sec^2(x) - tan^2 (x))
= (secx + tanx)/1 = secx + tanx = RHS
Show that tanx+secx-1/tanx-secx+1 is equivalent to 1+sinx/cosx?
Sell on Amazon.
Questioners out there — why not over-parenthesize for a change? I’m tired of the ambiguous lack of parentheses we usually get. In this question, the best interpretation has the “/” binding weakest of all.
I’m sick of trig notation, so let’s abbreviate s=sinx,c=cosx.
tanx+secx−1tanx−secx+1
=sc+1c−ccsc−1c+cc
=s+1−cs−1+c
=(s−c+1s+c−1)(s+c+1s+c+1)
=s2−c2+s+c+(s−c)+1s2+c2+2sc−1
=s2−(1−s2)+2s+11+2sc−1
=2s2+2s2sc
=s+1c
=1+sinxcosx
(secA-tanA)^2(1+sinA)=1-sinA
LHS\ =\ (secA-tanA)^2(1+sinA)
=\ (sec^2A+tan^2A-2secA.tanA)(1+sinA)
=\ (\dfrac{1}{cos^2A}+\dfrac{sin^2A}{cos^2A}-2.\dfrac{1}{cosA}.\dfrac{sinA}{cosA})(1+sinA)
=\ \dfrac{1+sin^2A-2.sinA.cosA}{cos^2A}.(1+sinA)
=\ \dfrac{(1-sinA)^2}{1-sin^2A}.(1+sinA)
=\ \dfrac{(1-sinA)^2(1+sinA)}{(1-sinA)(1+sinA)}
=\ 1-sinA