Prove that log 2 24/ log 96 2 - log 2 192 / log 12 2 =3.
Answers
Given: { log ( base 2) 24 / log ( base 96) 2 } - { log ( base 2) 192 / log ( base 12) 2 } = 3
To find: Prove LHS = RHS
Solution:
- Before proceeding, we know the property that log (base b) a = log a / log b.
- Now, lets consider LHS,
= { log ( base 2) 24 / log ( base 96) 2 } - { log ( base 2) 192 / log ( base 12) 2 }
- By using the above property, we get:
= { log 24 / log 2 / log 2 / log 96 } - { log 192 / log 2 / log 2 / log 12 }
- Now, solving further, we get:
= { log 24 x log 96 /( log 2 )² - log 192 x log 12/ (log 2 )²}
= { log 24 x log 96 - log 192 x log 12 } / (log 2 )²
= { log (2³x3) x log (2^5 x 3) - log (2^6 x 3) x log (2²x3) } / (log 2 )²
- Now we have the property that
log (ab) = log a + log b
=log 2³ + log 3 x log 2^5 + log 3 - (log 2^6 + log 3 x log 2² + log 3) /(log 2 )²
- Now we have the property that
log a^b = b log a
=3log 2 + log 3 x 5log 2 + log 3 - (6log 2 + log 3 x 2log 2 + log 3) / (log 2 )²
= { 15(log 2)² + 3(log 2)(log 3) + 5(log 2)(log 3) + (log 3)² } - { 12(log 2)² + 6(log 2) (log 3) + 2(log 2)(log 3) + (log 3)² } / (log 2 )²
- After subtracting the terms we get:
= 15(log 2)² - 12(log 2)² / (log 2 )²
= 3(log 2 )²/ (log 2 )²
= 3 ..................RHS
hence proved.
Answer:
So from above, we have proved that LHS = RHS.