prove that m^2 - n^2 = 4√mn
Attachments:
![](https://hi-static.z-dn.net/files/db6/43db99358d7006364a4718f2a598dd40.jpg)
Answers
Answered by
1
m =tanA + sinA
n =tanA - sinA
m^{2}-n^{2} =(tanA + sinA)^{2} - (tanA-sinA)^{2}
m^{2}-n^{2} =4tanA.sinA
mn = (tanA+sinA)(tanA-sinA)
mn = tan^{2}A-sin^{2}A
mn = sin^{2}A(\frac{1}{cos^{2}A}-1)
mn = sin^{2}A(\frac{1-cos^{2}A}{cos^{2}A})
mn = sin^{2}A(\frac{sin^{2}A}{cos^{2}A})
mn = sin^{2}A.tan^{2}A
\sqrt{mn} = sinA.tanA
m^{2}-n^{2} =4tanA.sinA
m^{2}-n^{2} =4\sqrt{mn} 4 years ago
Approved If tanA + sinA = m and tanA – sinA = n, show that m2 – n2 = 4√(mn)
Similar questions