Math, asked by Anonymous, 5 months ago


prove that m - n = 1​

Attachments:

Anonymous: What's the value of exponent on 3, 9/2 or a/2 ?

Answers

Answered by Rajshuklakld
6

Concept;-Focus on LHS and convert it into factors of 3

LHS=

 \frac{ ({9})^{a} \times  {3}^{2} {3}^{ { (\frac{ -9}{2} )}^{ -2} } -  ( {27})^{a}   }{( {3})^{3m}  \times  {2}^{3} }  =  \frac{ {3}^{ {2}^{a}  }  \times  {3}^{2 + a}  -  {3}^{3a} }{ {3}^{3m} \times  {2}^{3}  }  \\ Lhs =   \frac{ {3}^{3a + 2}  -  {3}^{3a} }{ {3}^{3m}  \times  {2}^{3} }  \\ take \: out \:  {3}^{3a}  \: common \: we \: get \\ Lhs =  >  \frac{ {3}^{3a} ( {3}^{2}  - 1)}{ {3}^{3m}  \times  {2}^{3} } =  \frac{ {3}^{ 3a}   \times  {2}^{3} }{ {3}^{3m} \times  {2}^{3}  }   =  \frac{ {3}^{3a} }{ {3}^{3m} }  =  \frac{1}{ {3}^{3m - 3a} }  \\ but \: it \: is \: equal \: to \:  \frac{1}{27} or \:  \frac{1}{ {3}^{3} } so \\  \frac{1}{ {3}^{3(m - a)} }  =  \frac{1}{ {3}^{3 \times 1} } \\ Comparing \: both \: side \: we \: get \: m - a = 1


Anonymous: thank u sir
Rajshuklakld: I am not sir...lol
Answered by Anonymous
46

Explanation,

ㅤㅤㅤㅤ

\bigstar\: \:\red{\bold{\dfrac{9 {}^{n} \times 3 {}^{2} \bigg(3 {}^{  - \dfrac{n}{ 2} }   \bigg) {}^{ - 2}   - (27 ) {}^{n} }{3  {}^{3m}  \times 2 {}^{3} }  =  \dfrac{1}{27} }}

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \: \bold{ \dfrac{9 {}^{n} \times 3 {}^{2} \bigg(3 {}^{  - \dfrac{n}{ \not2} }   \bigg) {}^{  \not{- 2}}   - 27  {}^{n} }{3  {}^{3m}  \times 2 {}^{3} }  =  \dfrac{1}{27} }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \dfrac{3 {}^{2n} \times 3 {}^{2} \times 3 {}^{n}   - 27 {}^{n}  }{3 {}^{3m}  \times 2 {}^{3} }  =  \dfrac{1}{27} }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \dfrac{3 {}^{2n + 2  + n}  - 3 {}^{3n} }{3 {}^{3m}  \times 2 {}^{3} } =  \dfrac{1}{27}  }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \dfrac{3 {}^{3n + 2  }  - 3 {}^{3n} }{3 {}^{3m}  \times 2 {}^{3} } =  \dfrac{1}{27}  }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \dfrac{3 {}^{3n} \times  (3 {}^{2} - 1) }{3 {}^{3m} \times 2 {}^{3}  }  =  \dfrac{1}{27}  }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \dfrac{3 {}^{3n} \times  8}{3 {}^{3m} \times 8  }  =  \dfrac{1}{27}  }

ㅤㅤㅤㅤ

 \displaystyle\longrightarrow \bold{ \dfrac{3 {}^{3n} \times   \not8}{3 {}^{3m} \times  \not8  }  =  \dfrac{1}{27}  }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \dfrac{3 {}^{3n} }{3 {}^{3m} }  =  \dfrac{1}{27}  }

ㅤㅤㅤㅤ

\displaystyle\longrightarrow \bold{ \not3 {}^{3n - 3m}  =  \not3 {}^{ - 3} }

ㅤㅤㅤㅤ

\displaystyle \longrightarrow \bold{3n - 3m =  - 3}

ㅤㅤㅤㅤ

\displaystyle \longrightarrow \bold{ \not{ 3}(n- m) =    - \not{3}}

ㅤㅤㅤㅤ

\displaystyle \longrightarrow \bold{ \not{ - }(m- n) =  \not{ - }1 }

ㅤㅤㅤㅤ

\displaystyle \longrightarrow  \boxed{ \green{\bold{m - n = 1 }}}  \: \bigstar

ㅤㅤㅤㅤ

Similar questions