prove that n!/(n-r)!r!+n!/(n-r+1)!(r-1)!=(n+1)!/r!(n-r+1)!
Answers
Answered by
53
To prove
n! / r!(n-r)! + n! / (r-1)! (n-r+1)! = (n+1)! / r!(n-r+1)!
L.H.S
n! / (r)(r-1)! (n-r)! +n! / (r-1)! (n-r+1)(n-r)!
n! / (r-1)! (n-r)! will be common
so,
n! / (r-1)! (n-r)! *[ 1/r + 1/(n-r+1) ]
n! / (r-1)! (n-r)! *[ n-r+1+r / nr-r2 +r ]
we will get ,
n! / (r-1)! (n-r)! / * [n+1 / r(n-r+1)]
(n!) (n+1) / (r-1)! (r) (n-r)! (n-r+1)
(n+1)! / r! ( n-r+1)!
L.H.S=R.H.S
Thanks..
Have a colossal day ahead
Be Brainly
Answered by
30
Step-by-step explanation:
hope you will get it to be useful
Attachments:
Similar questions