Math, asked by Anonymous, 5 months ago

Prove that:-. no spam otherwise Account will be deleted..no spam .​

Attachments:

Answers

Answered by Anonymous
3

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

 \\ \small  \sf{l.h.s =  \frac{ {cos}^{2}(45  +  \theta) +  {cos}^{2}(45 -  \theta)  }{tan(60 +  \theta)tan(30 -  \theta)} } \\  \\  \\     \bigstar\boxed{ \bf{sin \theta = cos(90 -  \theta)}} \\  \\ \bigstar  \boxed{ \bf{cot \theta = tan(90 -  \theta)}} \\  \\  \\   =  \small \sf \frac{ {cos}^{2}( 45 +  \theta) +  {sin}^{2}(90 - (45 +  \theta)) }{tan(60 +  \theta)cot(90 - (30 -  \theta))}  \\  \\  \\   =   \sf\frac{ {cos}^{2} (45 +  \theta) +  {sin}^{2}(45  -  \theta) }{tan(60 +  \theta)cot(60 +  \theta)}  \\  \\  \\    \bigstar\boxed{ \bf{ {cos}^{2} \theta +  {sin}^{2}  \theta = 1 }} \\  \\   \bigstar\boxed{ \bf{tan \theta =  \frac{1}{cot \theta} }} \\  \\  \\   \sf =  \frac{1}{ \cancel{tan(60 +  \theta) }(\frac{1}{ \cancel{tan(60 +  \theta)}) } } \\  \\  \\   = \sf 1 \:  = r.h.s \:  \:  \:  \:  \:  \: (proved)

Similar questions