Math, asked by Akshaymas, 1 year ago

PROVE THAT nPr=(n-r)Pr+r.(n-1)P(r-1)

Answers

Answered by zxsonu
12
I hope this answer will help you.
Attachments:
Answered by pinquancaro
9

Answer and Explanation:

To prove : ^nP_r=^{n-r}P_r+r\cdot^{n-1}P_{r-1}

Proof :

We know, ^nP_r=\frac{n!}{(n-r)!}

Taking LHS,

^nP_r=\frac{n!}{(n-r)!}

We can write, n!=n(n-1)!

^nP_r=\frac{n(n-1)!}{(n-r)(n-r-1)!}

Add and subtract r,

^nP_r=\frac{(n+r-r)(n-1)!}{(n-r)(n-r-1)!}

^nP_r=\frac{(n+r-r)}{(n-r)}\times \frac{(n-1)!}(n-r-1)!}

^nP_r=1+\frac{r}{n-r}\times \frac{(n-1)!}(n-r-1)!}

^nP_r=\frac{(n-1)!}{(n-r-1)!}+(\frac{r}{n-r})\times \frac{(n-1)!}{(n-r-1)!}

^nP_r=\frac{(n-1)!}{(n-1-r)!}+r[\frac{(n-1)!}{(n-r)(n-r-1)!}]

Again form a formula,

^nP_r=^{n-1}P_r+r[\frac{(n-1)!}{(n-r)!}]

^nP_r=^{n-1}P_r+r[\frac{(n-1)!}{(n-1-(r-1)!}]

^nP_r=^{n-1}P_r+r[^{n-1}P_{r-1}}]

Hence proved.

Similar questions