Math, asked by tiyasoni1312, 1 year ago

Prove that one of every three consecutive positive integers is divisible by 3.

Answers

Answered by nikky28
15
HIII
SEE THE ANSWER. ..

Let three consecutive positive integers be n, n + 1 and n + 2.

Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.

∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.

If n = 3p, then n is divisible by 3.

If n = 3p + 1, then n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.

If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.

So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.


HOPE YOU LIKE IT .....


tiyasoni1312: Thanks for us answer.,
Answered by Anonymous
4

Step-by-step explanation:


Let 3 consecutive positive integers be n, n + 1 and n + 2 .


Whenever a number is divided by 3, the remainder we get is either 0, or 1, or 2.

:


Therefore:

n = 3p or 3p+1 or 3p+2, where p is some integer


If n = 3p = 3(p) , then n is divisible by 3


If n = 3p + 1, then n + 2 = 3p +1 + 2 = 3 p + 3 = 3 ( p + 1 ) is divisible by 3


If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3


Thus, we can state that one of the numbers among n, n+1 and n+2 is always divisible by 3



Hence it is solved.


THANKS



#BeBrainly.


Similar questions