Prove that opposite sides of a quadrilateral
circumscribing a circle subtend supplementary
angles at the centre of the circle.
Answers
Answer:
supplementary angles means the angle is 180 degree after that you can prove
ɢɪᴠᴇɴ ;-
⇒ ᴀʙᴄᴅ ɪs ᴀ ϙᴜᴀᴅʀɪʟᴀᴛᴇʀᴀʟ ᴀɴᴅ ɪᴛ ʜᴀs ᴄɪʀᴄᴜᴍsᴄʀɪʙɪɴɢ ᴀ ᴄɪʀᴄʟᴇ ᴡʜɪᴄʜ ʜᴀs ᴄᴇɴᴛʀᴇ ᴏ.
ᴄᴏɴsᴛʀᴜᴄᴛɪᴏɴ ;-
⇒ ᴊᴏɪɴ - ᴀᴏ, ʙᴏ, ᴄᴏ, ᴅᴏ.
ᴛᴏ ᴘʀᴏᴠᴇ :-
⇒ ᴏᴘᴘᴏsɪᴛᴇ sɪᴅᴇs ᴏғ ᴀ ϙᴜᴀᴅʀɪʟᴀᴛᴇʀᴀʟ ᴄɪʀᴄᴜᴍsᴄʀɪʙɪɴɢ ᴀ ᴄɪʀᴄʟᴇ sᴜʙᴛᴇɴᴅ sᴜᴘᴘʟᴇᴍᴇɴᴛᴀʀʏ ᴀɴɢʟᴇs ᴀᴛ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.
ᴘʀᴏᴏғ ;-
⇒ ɪɴ ᴛʜᴇ ɢɪᴠᴇɴ ғɪɢᴜʀᴇ , ᴡᴇ ᴄᴀɴ sᴇᴇ ᴛʜᴀᴛ
⇒ ∠ᴅᴀᴏ = ∠ʙᴀᴏ [ʙᴇᴄᴀᴜsᴇ, ᴀʙ ᴀɴᴅ ᴀᴅ ᴀʀᴇ ᴛᴀɴɢᴇɴᴛs ɪɴ ᴛʜᴇ ᴄɪʀᴄᴇ]
sᴏ , ᴡᴇ ᴛᴀᴋᴇ ᴛʜɪs ᴀɴɢʟs ᴀs 1 , ᴛʜᴀᴛ ɪs ,
⇒ ∠ᴅᴀᴏ = ∠ʙᴀᴏ = 1
ᴀʟsᴏ ɪɴ ϙᴜᴀᴅ. ᴀʙᴄᴅ , ᴡᴇ ɢᴇᴛ,
⇒ ∠ᴀʙᴏ = ∠ᴄʙᴏ { ʙᴇᴄᴀᴜsᴇ , ʙᴀ ᴀɴᴅ ʙᴄ ᴀʀᴇ ᴛᴀɴɢᴇɴᴛs }
⇒ᴀʟsᴏ , ʟᴇᴛ ᴜs ᴛᴀᴋᴇ ᴛʜɪs ᴀɴɢʟᴇs ᴀs 2. ᴛʜᴀᴛ ɪs ,
⇒ ∠ᴀʙᴏ = ∠ᴄʙᴏ = 2
⇒ ᴀs sᴀᴍᴇ ᴀs , ᴡᴇ ᴄᴀɴ ᴛᴀᴋᴇ ғᴏʀ ᴠᴇʀᴛɪᴄᴇs ᴄ ᴀɴᴅ ᴀs ᴡᴇʟʟ ᴀs ᴅ.
⇒ sᴜᴍ. ᴏғ ᴀɴɢʟᴇs ᴏғ ϙᴜᴀᴅʀɪʟᴀᴛᴇʀᴀʟ ᴀʙᴄᴅ = 360° { sᴜᴍ ᴏғ ᴀɴɢʟᴇs ᴏғ ϙᴜᴀᴅ ɪs 360°}
ᴛʜᴇʀғᴏʀᴇ ,
⇒ 2 (1 + 2 + 3 + 4 ) = 360° { sᴜᴍ. ᴏғ ᴀɴɢʟᴇs ᴏғ ϙᴜᴀᴅ ɪs - 360° }
⇒ 1 + 2 + 3 + 4 = 180°
ɴᴏᴡ , ɪɴ ᴛʀɪᴀɴɢʟᴇ ᴀᴏʙ,
⇒ ∠ʙᴏᴀ = 180 – ( ᴀ + ʙ )
⇒ { ᴇϙᴜᴀᴛɪᴏɴ 1 }
ᴀʟsᴏ , ɪɴ ᴛʀɪᴀɴɢʟᴇ ᴄᴏᴅ,
⇒ ∠ᴄᴏᴅ = 180 – ( ᴄ + ᴅ )
⇒ { ᴇϙᴜᴀᴛɪᴏɴ 2 }
⇒ғʀᴏᴍ ᴇϙ. 1 ᴀɴᴅ 2 ᴡᴇ ɢᴇᴛ ,
⇒ ᴀɴɢʟᴇ ʙᴏᴀ + ᴀɴɢʟᴇ ᴄᴏᴅ
= 360 – ( ᴀ + ʙ + ᴄ + ᴅ )
= 360° – 180°
= 180°
⇒sᴏ , ᴡᴇ ᴄᴏɴᴄʟᴜᴅᴇ ᴛʜᴀᴛ ᴛʜᴇ ʟɪɴᴇ ᴀʙ ᴀɴᴅ ᴄᴅ sᴜʙᴛᴇɴᴅ sᴜᴘᴘʟᴇᴍᴇɴᴛᴀʀʏ ᴀɴɢʟᴇs ᴀᴛ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏ
⇒ʜᴇɴᴄᴇ ɪᴛ ɪs ᴘʀᴏᴠᴇᴅ ᴛʜᴀᴛ - ᴏᴘᴘᴏsɪᴛᴇ sɪᴅᴇs ᴏғ ᴀ ϙᴜᴀᴅʀɪʟᴀᴛᴇʀᴀʟ ᴄɪʀᴄᴜᴍsᴄʀɪʙɪɴɢ ᴀ ᴄɪʀᴄʟᴇ sᴜʙᴛᴇɴᴅ sᴜᴘᴘʟᴇᴍᴇɴᴛᴀʀʏ ᴀɴɢʟᴇs ᴀᴛ ᴛʜᴇ ᴄᴇɴᴛʀᴇ ᴏғ ᴛʜᴇ ᴄɪʀᴄʟᴇ.