Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Answers
ɢɪᴠᴇɴ : ᴀ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ᴄᴇɴᴛʀᴇ ᴏ ᴛᴏᴜᴄʜᴇs ᴛʜᴇ sɪᴅᴇs ᴀʙ, ʙᴄ, ᴄᴅ ᴀɴᴅ ᴅᴀ ᴏғ ᴀ ϙᴜᴀᴅʀɪʟᴀᴛᴇʀᴀʟ ᴀʙᴄᴅ ᴀᴛ ᴛʜᴇ ᴘᴏɪɴᴛs ᴘ, ϙ, ʀ ᴀɴᴅ s ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ.
ᴛᴏ ᴘʀᴏᴠᴇ : ∠ᴀᴏʙ + ∠ᴄᴏᴅ = 180°
∠ᴀᴏᴅ + ∠ʙᴏᴄ = 180°
ɢɪᴠᴇɴ : ᴀ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ᴄᴇɴᴛʀᴇ ᴏ ᴛᴏᴜᴄʜᴇs ᴛʜᴇ sɪᴅᴇs ᴀʙ, ʙᴄ, ᴄᴅ ᴀɴᴅ ᴅᴀ ᴏғ
ᴄᴏɴsᴛ. : ᴊᴏɪɴ ᴏᴘ, ᴏϙ, ᴏʀ ᴀɴᴅ ᴏs.
ᴘʀᴏᴏғ : sɪɴᴄᴇ, ᴛʜᴇ ᴛᴡᴏ ᴛᴀɴɢᴇɴᴛs ᴅʀᴀᴡɴ ғʀᴏᴍ ᴀɴ ᴇxᴛᴇʀɴᴀʟ ᴘᴏɪɴᴛ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ sᴜʙᴛᴇɴᴅ ᴇϙᴜᴀʟ ᴀɴɢʟᴇs ᴀᴛ ᴛʜᴇ ᴄᴇɴᴛʀᴇ.
∴ ∠1 = ∠2, ∠3 = ∠4, ∠5 = ∠6, ∠7 = ∠8
sɪɴᴄᴇ sᴜᴍ ᴏғ ᴀʟʟ ᴛʜᴇ ᴀɴɢʟᴇs sᴜʙᴛᴇɴᴅᴇᴅ ᴀᴛ ᴀ ᴘᴏɪɴᴛ ɪs 360°.
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8
= 360°
⇒2 ∠2 + 2 ∠3 + 2 ∠6 + 2 ∠7) = 360°
⇒ 2 (∠2 + ∠3 + ∠6 + ∠7) = 360°
⇒ ∠2 + ∠3 + ∠6 + ∠7) = 180°
⇒ (∠6 + ∠7) + (∠2 + ∠3) = 180°
⇒ ∠ᴀᴏʙ + ∠ᴄᴏᴅ = 180°
sɪᴍɪʟᴀʀʟʏ, ᴡᴇ ᴄᴀɴ ᴘʀᴏᴠᴇ ∠ᴀᴏᴅ + ∠ʙᴏᴄ = 180°
ɱαɾҡ αร ɓɾαเɳℓเεรƭ⭐
AnswEr:-
GIVEN :-
⇒ ABCD is a quadrilateral and it has circumscribing a circle Which has centre O.
CONSTRUCTION ;-
⇒ Join - AO, BO, CO, DO.
TO PROVE :-
⇒ Opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
PROOF ;-
From the given figure ,
⇒ ∠DAO = ∠BAO [ AB and AD are tangents in the circle]
So , we take this angle as 1 :
⇒ ∠DAO = ∠BAO = 1
Also in quad. ABCD ,
⇒ ∠ABO = ∠CBO { BA and BC are tangents }
Also , let us take this angles as 2. that is ,
⇒ ∠ABO = ∠CBO = 2
let us take for vertices C and as well as D.
⇒ Sum. of angles of quadrilateral ABCD = 360° { Sum of angles of quad is 360°}
Therefore ,
⇒ 2 (1 + 2 + 3 + 4 ) = 360° { Sum. of angles of quad is - 360° }
⇒ 1 + 2 + 3 + 4 = 180°
Now , in Triangle AOB,
⇒ ∠BOA = 180 – ( a + b )
{ Equation 1 }
Also , In triangle COD,
⇒ ∠COD = 180 – ( c + d )
{ Equation 2 }
From Eq. 1 and 2 we get ,
⇒ Angle BOA + Angle COD
= 360 – ( a + b + c + d )
= 360° – 180°
= 180°
So , we conclude that the line AB and CD subtend supplementary angles at the centre O
.
Therefore, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Hence proved
_________________________________________