prove that opposite sides of a quadrilateral circumscribing a circle subtend sumplementry angles at the centre.
Answers
Answered by
1
Answer:
hope this will help
Step-by-step explanation:
Let ABCD be a quadrilateral circumscribing a circle with centre O.
Now join AO, BO, CO, DO.
From the figure, ∠DAO=∠BAO [Since, AB and AD are tangents]
Let ∠DAO=∠BAO=1
Also ∠ABO=∠CBO [Since, BA and BC are tangents]
Let ∠ABO=∠CBO=2
Similarly we take the same way for vertices C and D
Sum of the angles at the centre is 360o
Recall that sum of the angles in quadrilateral, ABCD = 360o
=2(1+2+3+4)=360o
=1+2+3+4=180o
In ΔAOB,∠BOA=180−(1+2)
In ΔCOD,∠COD=180−(3+4)
∠BOA+∠COD=360−(1+2+3+4)
=360o–180o
=180o
Since AB and CD subtend supplementary angles at O.
Thus, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Attachments:
Similar questions