Math, asked by itzsecretagent, 3 months ago

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.​

Answers

Answered by darshanravaldz
39

Answer:

Let ABCD be a quadrilateral circumscribing a circle with centre O.

Now join AO, BO, CO, DO.

From the figure, ∠DAO=∠BAO [Since, AB and AD are tangents]

Let ∠DAO=∠BAO=1

Also ∠ABO=∠CBO [Since, BA and BC are tangents]

Let ∠ABO=∠CBO=2

Similarly we take the same way for vertices C and D

Sum of the angles at the centre is 360

o

Recall that sum of the angles in quadrilateral, ABCD = 360

o

=2(1+2+3+4)=360

o

=1+2+3+4=180

o

In ΔAOB,∠BOA=180−(1+2)

In ΔCOD,∠COD=180−(3+4)

∠BOA+∠COD=360−(1+2+3+4)

=360

o

–180

o

=180

o

Since AB and CD subtend supplementary angles at O.

Thus, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Figure in attachment pls see

Hope it helps you

Pls mark Brainliest✨

Attachments:
Answered by Anonymous
120

Question :-

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle

Answer :-

 \\ \\

Let ABCD be a quadrilateral circumscribing a circle with centre O. A circle touches the sides of a quadrilateral at points E, F ,G and H.

 \\ \\

\star\;{\underline{\boxed{\pmb{\green{\frak{\;To \:proove\; : -}}}}}} \angle{AOB} + \angle{COD} = 180°

and \angle{AOD} + \angle{COD} = 180°.

 \\ \\

\star\;{\underline{\boxed{\pmb{\green{\frak{Construction}}}}}}

  • join OH , OF ,OE and OG.

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow Proof Using the property , two tangents from the external point to a circle subtend equal angles at the centre.

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{1} = \angle{2}

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{3} = \angle{4}...(1)

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{5}= \angle{6}

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{7}= \angle{8}

 \\ \\

We know the sum of all angles subtenided at point O is 360°

 \\ \\

\therefore \angle{1} +\angle{2} +\angle{3} +\angle{4} +\angle{5}+ \angle{6} + \angle{7}+ \angle{8} = 360°

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow 2( \angle{2} +\angle{3} +\angle{6} +\angle{7} = 360°

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{1}+ \angle{4} +\angle{7}+ \angle{8} = 360° ...[From Equation ..(1)

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow (\angle{2}+ \angle{4}) + ( \angle{6}+ \angle{7}) = 180°

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow (\angle{1}+ \angle{8})+ (\angle{4}+ \angle{5}) = 180°

 \\ \\

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{AOB}+ \angle{COD} = 180°

\:\:\:\:\:\:\:\:\:\huge\rightarrow \angle{AOD}+ \angle{BOC} = 180°

\Huge\sf\implies Hence proved

Attachments:
Similar questions