Math, asked by gmehak595, 2 months ago

prove that opposite sides of quadrilateral circumscribing a circle subtend supplymentry angle at the centre of the circle​

Answers

Answered by itzdarkyandere
1

GIVEN

⇒ ABCD is a quadrilateral and it has circumscribing a circle Which has center O.

CONSTRUCTION ;-

⇒ Join -  AO, BO, CO, DO.

TO PROVE :-

⇒  Opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle.

PROOF  

⇒ In the given figure , we can see that

 

                     ⇒  ∠DAO = ∠BAO [Because, AB and AD are tangents in the                                                       circle]  

So , we take this angle as 1 , that is ,

         

                     ⇒  ∠DAO = ∠BAO = 1

Also  in quad. ABCD , we get,

 

                    ⇒ ∠ABO = ∠CBO { Because , BA and BC are tangents }

⇒Also , let us take this angles as 2. that is ,

 

                    ⇒ ∠ABO = ∠CBO = 2  

⇒ As same as , we can take for vertices C and as well as D.

⇒ Sum. of angles of quadrilateral ABCD =  360° { Sum of angles of quad                                                                                   is 360°}

Therfore ,

     ⇒ 2 (1  + 2 + 3 + 4 )  =  360° { Sum. of angles of quad is - 360° }

         

 

      ⇒ 1  +  2  +  3  +  4 = 180°  

Now , in Triangle  AOB,

               

                     ⇒ ∠BOA =  180  –   ( a + b )

                                                                           ⇒ { Equation 1 }

Also , In triangle COD,

 

 

                    ⇒ ∠COD  =  180  –  ( c + d )

                                                                            ⇒ { Equation 2 }

⇒From Eq. 1 and 2 we get ,

 

                              ⇒ Angle  BOA + Angle  COD

                               = 360 – ( a  +  b  +  c  +  d )  

                               =  360°   –  180°  

                               = 180°  

⇒So , we conclude that the line  AB and CD subtend supplementary angles at the center  O

⇒Hence it is proved that - opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle.

Similar questions