Math, asked by kailashmeena123rm, 11 months ago

prove that
.......
please
meri notebook mil nahi rahi​

Attachments:

Answers

Answered by rishu6845
12

\bold{Given }=  > if \\  {x}^{2}   + 4 {y}^{2} + 25 {z}^{2}   = 2 xy + 10yz + 5zx

\bold{To \: prove} =  > x = 2y = 5z

concept \: used =  >  \\ 1) {(x  -  y )}^{2}  =  {x}^{2} +  {y}^{2}     -  2x \: y

2) \: value \: of \: square \: can \: not \: be \: negative \:

3)if \: sum \: of \: square \: quantities \: is \: equal \: to \: zero  \\ if \: quantities \: individullay \: equal \: to \: zero

\bold{Solution} =  >  \\  {x}^{2}  + 4 {y}^{2}  + 25 {z}^{2}  = 2xy + 10yz + 5zx

 =  >  {(x)}^{2}  +  {(2y)}^{2}  +  {(5z)}^{2}  = (x) \: (2y) + (2y) \: (5z) + (x) \: (5z)

let \: x = a \: and \: 2y = b \: and \: 5z = c

 =  >  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = ab \:  + bc \:  + ca

multiplying \: whole \: equation \: by \: 2

 =  > 2 {a}^{2}  + 2 {b}^{2}  + 2 {c}^{2}  = 2ab \:  +  \: 2bc \:  + 2ca

 =  > 2 {a}^{2}  + 2 {b}^{2}  + 2 {c}^{2}  - 2ab - 2bc - 2ca = 0

 =  > ( {a}^{2}  +  {b}^{2}  - 2ab) + ( {b}^{2}  +  {c}^{2}  - 2bc) + ( {c}^{2} +  {a}^{2}   - 2ca) = 0

 =  >  {(a - b)}^{2}  +  {(b - c)}^{2}  +  {(c - a)}^{2}  = 0

 sum \: of \: square \: quantities \: is \:  equal\: to \: zero \: if \: only \\ a - b = 0 \:  =  > a = b \\ and \: if \\ b - c = 0 =  > b = c \\ and \: if  \\ a - c = 0 =  > a = c \\ so \: a = b = c \\ putting \: a = x \: and \: b = 2y \: and \:c =  5z  \\  =  > x = 2y = 5z

Similar questions