Math, asked by sarojar670, 8 months ago

Prove that:

please solve this question ​

Attachments:

Answers

Answered by MaIeficent
7

Step-by-step explanation:

Question:-

\rm Prove \: that:-

\rm  \dfrac{sin \theta}{cot \theta +  cosec \theta}  = 2 +  \dfrac{sin \theta}{cot \theta - cosec \theta}

Proof:-

Let us Prove by simplifying LHS and RHS seperately.

Taking LHS:-

\rm LHS  = \dfrac{sin \theta}{cot \theta +  cosec \theta}

 \rm  = \dfrac{sin \theta}{ \dfrac{cos \theta}{sin \theta} +   \dfrac{1}{sin \theta} }

 \rm  = \dfrac{sin \theta}{ \dfrac{cos \theta + 1}{sin \theta}  }

 \rm  = \dfrac{sin \theta \times sin \theta}{ cos \theta + 1 } =   \dfrac{sin ^{2} \theta}{ cos \theta + 1}

 \rm  = \dfrac{1 -  {cos}^{2} \theta }{ cos \theta + 1 }   \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \bigg ( \because \: sin ^{2}  = 1 -  {cos}^{2} \theta \bigg)

 \rm  = \dfrac{(1 -  {cos} \theta )(1 + cos \theta)}{ 1 + cos \theta }

  \boxed{ \rm \leadsto 1 -  {cos} \theta  = LHS}

Now, Taking RHS

  \rm RHS = 2 +  \dfrac{sin \theta}{cot \theta - cosec \theta}

 \rm  = 2 + \dfrac{sin \theta}{ \dfrac{cos \theta}{sin \theta}  -  \dfrac{1}{sin \theta} }

 \rm  = 2+ \dfrac{sin \theta}{ \dfrac{cos \theta  -  1}{sin \theta}  }

 \rm  =2 +  \dfrac{sin \theta \times sin \theta}{ cos \theta  - 1 } =   2 + \dfrac{sin ^{2} \theta}{ cos \theta  -  1}

 \rm  =2+ \dfrac{1 -  {cos}^{2} \theta }{ -(cos \theta - 1) }

 \rm  = 2-  \dfrac{(1 -  {cos} \theta )(1 + cos \theta)}{ 1 - cos\theta  }

 \rm  = 2-(1 + cos \theta)

\rm = 2 - 1 - cos\theta

  \boxed{ \rm \leadsto 1 -  {cos} \theta  = RHS}

  \boxed{ \rm \dashrightarrow LHS = RHS =  1 -  {cos} \theta  }

LHS = RHS

Hence Proved

Similar questions