prove that points (2a,4a), (2a,6a), and (2a +√3a,5a) are the vertices of an equilateral triangle of side 2a
Answers
Answered by
140
hope it will help you
Attachments:
Answered by
56
Solution:
Let A(2a,4a),B(2a,6a) and C(2a+√3a,5a) are veriticies of
a triangle ABC.
______________________
Distance formula:
The distance between the
points (x1,y1) and (x2,y2) is
√(x2-x1)²+(y2-y1)²
_______________________
i )A(2a,4a), B(2a,6a)
Distance AB = √(2a-2a)²+(6a-4a)²
= √(2a)²
= 2a ----(1)
ii) B(2a,6a) and C(2a+√3a,5a)
Distance BC
= √(2a+√3a-2a)²+(5a-6a)²
= √(√3a)²+(-a)²
= √3a²+a²
= √4a²
= √(2a)²
= 2a ---(2)
iii) C(2a+√3a,5a) and A(2a,4a)
Distance CA
= √[2a-(2a-√3a)]²+(4a-5a)²
= √(2a-2a+√3a)²+(-a)²
= √(√3a)²+a²
=√3a²+a²
= √4a²
= √(2a)²
= 2a
Therefore,
AB = BC = CA = 2a
∆ABC is a equilateral triangle.
•••••
Similar questions