prove that q x²-2px+ q = 0
Attachments:
Answers
Answered by
3
Hey there,
Sol:
Given x = [√(p + 2q) + √(p - 2q) ] / [√(p + 2q) - √(p - 2q)]
rationalize the denominator
x = [√(p + 2q) + √(p - 2q) ]2 / [(p + 2q) - (p - 2q)]
x = [√(p + 2q) + √(p - 2q) ]2 / 4q.
4qx = 2p + 2√(p2 - 4q2)
2qx - p = √(p2 - 4q2) squaring on both sides
4q2x2 - 4pqx + p2 = p2 - 4q2
4q[ qx2 - px + q ] = 0
qx2 - px + q = 0
Hope this helps!
Sol:
Given x = [√(p + 2q) + √(p - 2q) ] / [√(p + 2q) - √(p - 2q)]
rationalize the denominator
x = [√(p + 2q) + √(p - 2q) ]2 / [(p + 2q) - (p - 2q)]
x = [√(p + 2q) + √(p - 2q) ]2 / 4q.
4qx = 2p + 2√(p2 - 4q2)
2qx - p = √(p2 - 4q2) squaring on both sides
4q2x2 - 4pqx + p2 = p2 - 4q2
4q[ qx2 - px + q ] = 0
qx2 - px + q = 0
Hope this helps!
You111:
This is correct solution
Similar questions