Math, asked by ap275230, 11 months ago

prove that question​

Attachments:

Answers

Answered by ykyash15
3

Answer:

Hi there !!!!

Here is your answer ⬆️⬆️⬆️⬆️

Mark it as brainliest if it helps you ✌️✌️✌️

Attachments:
Answered by Sharad001
68

Question :-

Prove that

 \frac{ \sin \theta}{1 +  \cos \theta}  +  \frac{1  +  \cos \theta}{ \sin \theta}  = 2 \csc \theta \\

Proof :-

→ We will have to show that left hand side equal to right hand side .

Formula used :-

  \boxed{ \green{\star }} \: \:  { \sin}^{2}  \theta \:  +  { \cos}^{2}  \theta \:  = 1 \\  \\  \boxed{  \red{\star }}\:  \frac{1}{ \sin \theta}  =  \csc \theta \:  \\  \\   \boxed{ \orange{\star }}\: \sf{  {x}^{2}  +  {y}^{2}  + 2xy =  {(x + y)}^{2} }

Explanation :-

Firstly take left hand side (LHS)

 \rightarrow \: \frac{ \sin \theta}{1 +  \cos \theta}  +  \frac{1  +  \cos \theta}{ \sin \theta} \:  \\  \\  \rightarrow \:  \frac{ { \sin}^{2} \theta +  {(1  +  \cos \theta)}^{2}  }{ \sin \theta \: (1 +  \cos \theta)}  \\  \\  \because \sf{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy} \\  \\  \rightarrow \:  \frac{ { \sin}^{2}  \theta \:  +  {(1)}^{2} +  { \cos}^{2} \theta + 2 \cos \theta  }{ \sin \theta(1 +  \cos \theta)}  \\  \because \:  { \sin}^{2}  \theta \:  +  { \cos}^{2}  \theta \:  = 1 \\  \therefore \:  \\  \\  \rightarrow \:  \frac{1 + 1 +  2 \cos \theta}{ \sin \theta \: (1 +  \cos \theta \: )}  \\  \\  \rightarrow \:  \frac{2 + 2 \cos \theta}{ \sin \theta \: (1 +  \cos \theta)}  \\  \\  \rightarrow \:  \frac{2(1 +  \cos \theta)}{ \sin \theta \: (1 +  \cos \theta)}  \\  \\  \rightarrow \: 2 \times  \frac{1}{ \sin \theta}  \\  \\  \because \:  \csc \theta \:  =  \frac{1}{ \sin \theta}  \\  \\  \rightarrow \: 2 \: \csc \theta \:

Left hand side = right hand side

(LHS = RHS )

hence proved : )

_________________

#answerwithquality

#BAL

Similar questions