Math, asked by sathvik9368, 1 year ago

prove that root 1 + cos theta by 1 - cos theta is equals to cos theta + cot theta ​

Answers

Answered by Sharad001
139

Correct question :-

Prove that ,

 \to  \sqrt{ \frac{1  +  \cos \theta}{1 -  \cos \theta} }  =  \csc \theta +  \cot \theta \\

Proof :-

Formula used :-

 \star \:  \frac{1}{ \sin \theta} =  \csc \theta  \\  \: \\  \star \:  \:  \frac{ \cos \theta}{ \sin \theta}  =  \cot \theta \\  \\  \star \: 1 -  { \cos}^{2}  \theta =  { \sin}^{2}  \theta

Explanation :-

Taking left hand side ( LHS)

 \to \: \sqrt{ \frac{1  +  \cos \theta}{1 -  \cos \theta} }   \\  \\ \sf \:  rationalising \: by \:  \sqrt{ 1 +  \cos \theta} \\  \\  \to \sqrt{ \frac{1  +  \cos \theta}{1 -  \cos \theta} \times  \frac{1 +  \cos \theta}{1 +  \cos \theta}  }   \:  \\  \\ \to \: \sqrt{ \frac{ {(1 +  \cos \theta)}^{2} }{(1 -  \cos \theta)(1 +  \cos \theta)} }   \\  \\  \to \:  \sqrt{ \frac{ {(1 +  \cos \theta)}^{2} }{1 -  { \cos}^{2} \theta } }  \\  \\  \to \:  \sqrt{  \bigg({ \frac{1 +  \cos \theta}{ \sin \theta}  \bigg)}^{2} }  \\  \\  \to \:  \frac{1}{ \sin \theta}  +  \frac{ \cos \theta}{ \sin \theta}  \\  \\  \to \:  \csc \theta +  \cot \theta

LHS = RHS

hence proved .

Similar questions