prove that root 1 minus cos theta ÷ 1+ cos theta = cosec theta minus cot theta
Answers
Answered by
1
To Prove
(1 - cos∅)/(1 + cos∅) = (cosec∅ - cot∅)²
Proof
R.H.S → (cosec∅ - cot∅)²
- cosec∅ = 1/sin∅
- cot∅ = cos∅/sin∅
→ (cosec∅ - cot∅)²
→ (1/sin∅ - cos∅/sin∅)²
→ (1 - cos∅)²/sin²∅
→ (1 - cos∅)(1 - cos∅)/(1 - cos²∅)
- 1 - cos²∅ = (1 + cos∅)(1 - cos∅)
→ (1 - cos∅)(1 - cos∅)/(1 + cos∅)(1 - cos∅)
Here, (1 - cos∅) gets cancelled out.
→ (1 - cos∅)/(1 + cos∅) = L.H.S
Q.E.D
Answered by
4
Answer:
R.H.S = ⤵⤵⤵⤵⤵⤵
root 1-cos theta/1+cos theta
= root 1-cos theta/1+cos theta * 1 - cos theta/1-cos theta
= root (1-costheta)^2/ 1- cos^2 theta
= root (1 - cos theta)^2/sin ^2 theta
= 1 - cos theta/sin theta
= 1/sin theta - cos theta/sin theta
= cosec theta - cot theta = L.H.S
Similar questions