Math, asked by sukhwinderaulakh82, 9 months ago

prove that root 3 is irrational number​

Answers

Answered by JanviMalhan
210

Statement:

 \sf{prove \: that \:  \sqrt{3} \: is \: an \: irrational \: number}

Proof:

 \sf{ \: let \: us \: assume \: the \: opposite \: } \\  \\  \sf{ \sqrt{3} \: is \: an \: rational \: number}  \\  \\  \sf{ \: as \: we \: know \: that \: rational \: no. \: \: should \: be \: in \: the \: form \: of \:  \frac{p}{q}} \\  \sf{ \: and \: where \: p \: and \: q \: are \: co - prime} \\  \\  \sf{ \sqrt{3}  =  \frac{p}{q}  \: (where \: p \: and \: q \: are \: co \: prime)} \\  \\  \sf{ \sqrt{3}q = p} \:  \\  \\  \sf{ \: now \: squaring \: both \: the \: sides \: } \\  \sf{we \: get \: } \\  \sf{( \sqrt{3} {q})^{2} } =  {p}^{2}  \\  \sf{3 {q}^{2}  =  {p}^{2} }......(1) \\  \sf{So, \: if  \: 3  \: is  \: the \:  factor \:  of \:   {p}^{2}  \: } \\  \sf{then, \:  3  \: is  \: also \:  a  \: factor \:  of  \: p ..... ( ii )} \\  \sf{ \implies \: Let\: p = 3m (where \:  m \:  is \:  any \:  integer )} \:  \\  \\   \sf \bold{squaring \:  both \:  sides} \\  \sf \implies {p}^{2}  \:  = (3 {m})^{2}  \\  \sf{ {p}^{2}  = 9 {m}^{2} } \\  \\  \sf{putting \:  the \:  value \:  of \:   {p}^{2}   \: in \:  equation \: \: (1) } \\  \sf{3 {q}^{2}  =  {p}^{2} } \\  \sf{ {q}^{2}  = 3 {m}^{2} } \\  \sf \bold{ so} \\  \sf{if \:  3  \: is  \: factor \:  of  \:  {q}^{2} \: then \: 3 \: is \: also \: a \: factor \: of \: q } \\  \sf{since  } \: 3 \: is \: factor \:  of \:  p \:  and \:   q  \: both \:  \\  \sf{So, \:  our \:  assumption \:  that  \: p \:  and \:  q  \: are \:  co- prime \:  is wrong \: } \\  \\  \sf \orange{ \: hence \: , \:  \sqrt{3}  \: is \: an \: irrational \: number}

Similar questions